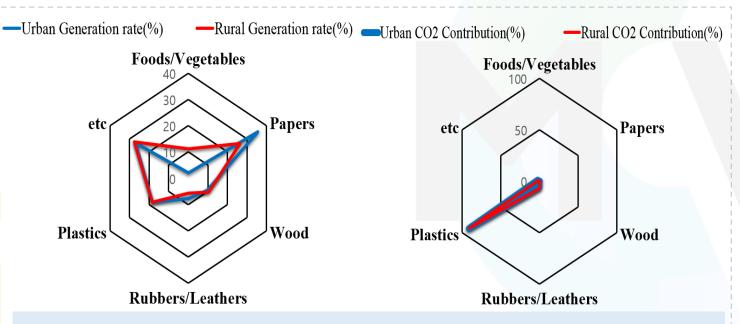
International Hybrid Session Short Oral Presentation

FA: 3R/ Waste management

Incineration of Municipal Solid Waste (MSW): Accounting on CO₂ emissions contribution

Jang Yuna, Amin Kalantarifard, Jang Jihoon, Byeon Eunsong, Jo Gwanggon, Yang Gosu

INTRODUCTION


Population growth, industries development, change lifestyle, caused increase the generation municipal solid waste. CO_2 emission from municipal solid waste is one of the main cause of global warming in developing countries. In this study, CO_2 emissions from the incineration of municipal waste in Jeollabuk-do regions calculated based on each type of solid waste. These dates can be used to estimate the total CO_2 emission based on reported equation which help to determine the suitable waste management option.

METHODOLOGY

$$CO_2 Emissions = MSW \times \sum (WF_j \cdot dm_j \cdot CF_j \cdot FCF_j \cdot OF_j) \times \frac{44}{12}$$

MSW = municipal solid waste, Gg/yr

- WF_j = ingredient J of waste type of MSW / proportion of material $(\sum WF_i = 1)$
- $Dm_i = dry$ matter content in the waste (wet weight)
- CF_{i} = fraction of carbon in the dry matter (total carbon content), (fraction)
- FCF_i = fraction of fossil carbon in the total carbon, (fraction)
- OF_i = oxidation factor, (fraction)
- 44/12 =conversion factor from C to CO₂
- j = type of waste incinerated specified as follows: paper /cardboard, textiles, food waste, wood, garden and park waste, disposable diapers, rubber, leather, plastic, metal, glass and other waste

RESULTS AND DISCUSSION

As a result, the contribution of collected municipal solid waste from rural and urban areas in Jeollabuk-do showed that plastic with more than 90% has a highest contribution in CO2 emission. Although the ratio of plastics accounted waste emissions are small, contribution of CO2 emissions has been identified to be very large compared to other waste. in order to reduce CO2 emissions during incineration, removal of plastics before incineration should be considered by sorting and recycling process.

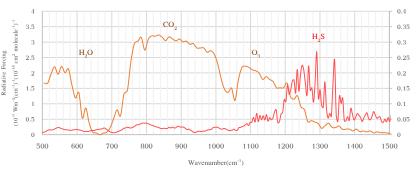
AGMC Air & Greenhouse Gas Management Center

The Effects of Malodorous Substances from Municipal Solid Waste (MSW)

Jo Gwanggon, Amin Kalantarifard, Byeon Eunsong, Jang yuna, Yang Gosu

<u>1. Instruction</u>

In countries that implemented the 'Emissions Trading', the rate of greenhouse-gas emissions as 'energy' is much larger than other parts. Among 'energy' parts, 'incineration power station' is known to a lots of CO_2 emissions because characteristic of fossils fuel. This study aimed to research Municipal Solid Waste (MSW)'s capacity of main incinerator at Jeollabuk-do, calculate to GWP of H₂S as malodorous substances that didn't calculated by IPCC 5th guideline and finally convert to H₂S-greenhouse effect by using equation of its physical and chemical characteristic functions.


2. Material and Method

To calculate total greenhouse effect of emitted H_2S as CO_2 during MSW treatment, we need total treatment capacity of MSW, H_2S emissions factor and GWP. This function consist with following equations,

 $TGE_{H_2S} = GWP_{H_2S} \times \frac{\left[TW \times \left(E_{Ip} + E_{Sf} + E_{St}\right)\right]}{10^3}$

- *E*_{*Ip*}, *E*_{*Sf*}, *E*_{*St*} indicate H₂S emission factor emitted from waste input, storage facility, stack(kg/activity-ton)
- TW is MSW's total capacity (ton/year) to import into incinerator

GWP, calculated by Elrod's spread sheet on his paper, is parameterized in 10 cm⁻¹ intervals for a ppbv and adjusted that 100 sections (500~1500 cm⁻¹) compared divided H_2S 's substance spectrum from experimented FT-IR.

We got a RF data 3.77E-05 Wm⁻² of H₂S from FT-IR, also realized final H₂S GWP is each 22.8, 5.8 with used basic gas characteristic of H₂S(Time Horizon 20, 100, Lifetime 0.12, adjust temperature, concentration by using Ideal Gas Equation, number density 9.70E+15 n/cm⁻³).

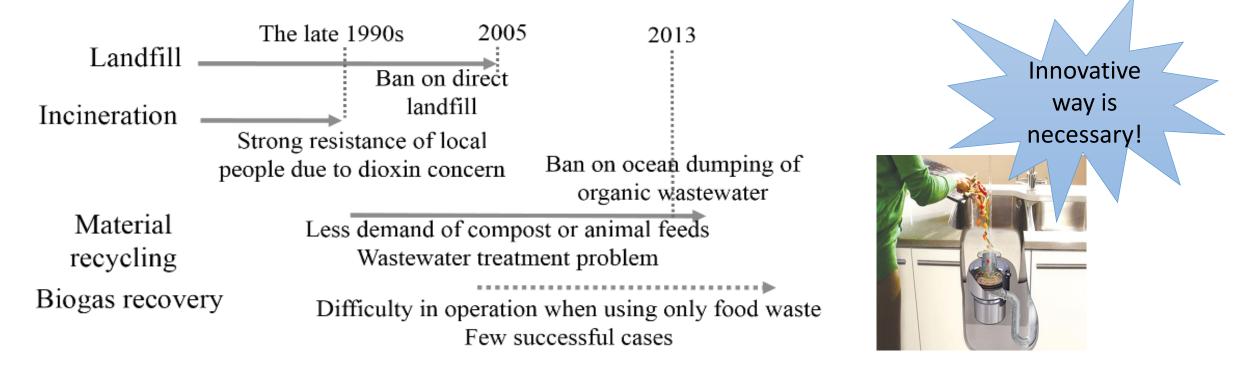
3. Result and Conclusion

We illustrated import volume of MSW to incineration, H_2S Emission factor (Waste input, Storage facility, Stack), except to 'landfill', 'recycle' at Jeollabuk-do from government report research on next Table

Area	Incinerated MSW in mixed	H ₂ S Emissions(kg/year)				
	emitted (ton/year)		Waste input	Storage facility	Stack	
Jeonju	49530.50		3.46	1.59	64.39	
Iksan	32923.00		2.30	1.05	42.80	
Jeongup	12191.00		0.85	0.39	15.85	
Namwon	36.50		0.00	0.00	0.05	
Gimje	7300.00		0.51	0.23	9.49	
Wanju	5365.50		0.38	0.17	6.98	

Finally we got a result from equation(TGE_{H_2S})

Area	Total Emissions of H ₂ S (kg/year	from incinerator
Jeonju	69.448	1.583
Iksan	46.156	1.052
Jeongup	17.091	0.390
Namwon	0.051	0.001
Gimje	10.234	0.233
Wanju	7.522	0.172


AGMC

Air & Greenhouse Gas Management Center

FA-4 Status and Challenges on the Application of Disposer in S. Korea

OMunsol Ju, Jae Young Kim, Seoul National University

Disposer performance Plumbing Disposer wastewater design treatment

Link to the organic waste recycling

Authority's management: Individual level or Building level

We aims to discuss considerations for the application of food waste disposer in S. Korea as one of the alternative way to present food waste management system.

A feasibility study on the pre-treatment for the recycling bottom ash of incineration in S city

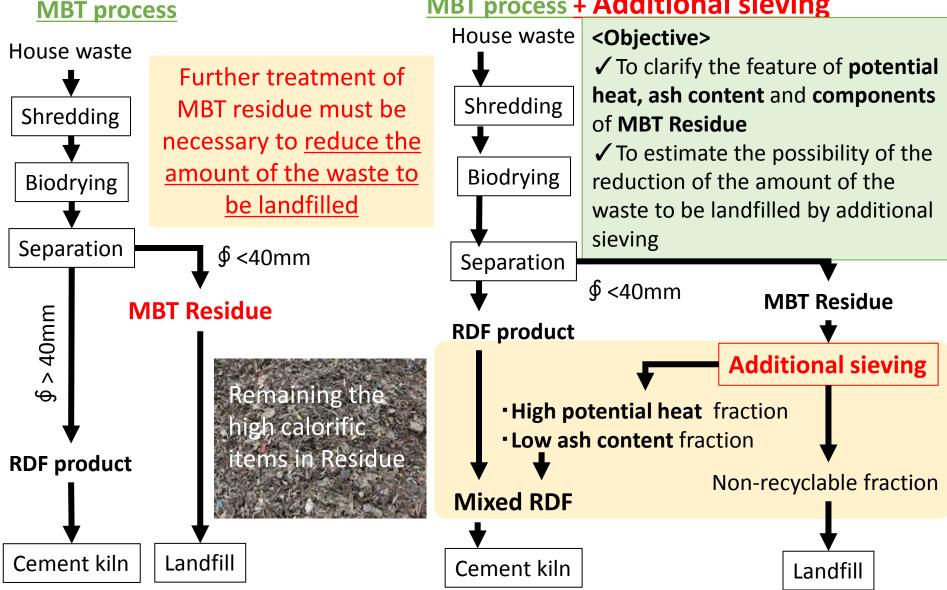
Hyeong-Wook Kim¹, Hoon-Sang Lee¹, Seung-Jin Oh¹, Minah Oh¹, Joon-Ha Kim¹, Jai-Young Lee¹, Myungho Lee²

Dept, Environmental Engineering, University of Seoul

2)

1)

Dept Department of civil & Environmental Engineering, University of Induk

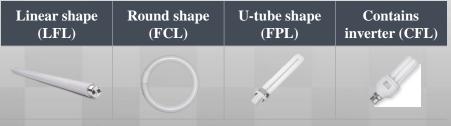

Introduction	Material & method				
Due to rapid industrialization and population growth, the amount of municipal solid waste increase.	Resource recovery facilities in four(A, B, C, D)				
The landfill reduces the efficiency of land use, such as	Condition				
the lack of landfill.	Weathering place Where the rainfall can be prevented in a well-ventilated				
Duamating many was to increase the ratio of	Bottom ash samples Weathering 120 days (Four month)				
Promoting measures to increase the ratio of municipal solid waste incineration and recycling.	collected Analysis of sample After weathering completed 30, 60, 90, 120 days				
 The amount of incineration bottom ash increases because the amount of incineration increases ✓ Reduction of the landfill through recycling of the incineration Bottom ash. 	Sieving ✓ CO2 Aging Three of Pre-treatment (Weathering, CO2 Aging, Washing) Flow rate of injection Where the rainfall can be prevented in a well-ventilated Period of injection 30 days (one month) Analysis of After weathering completed 1,3, 6, 10, 15, 20, 30 days √ Washing				
	v Washing				
 Based building data for Bottom ash recycling in "S" city 	Condition				
-	Analysis of pH, chloride, Solid-liquid ratio				
\checkmark Economical and effective provision of pre-treatment	leaching test were				
methods for recycling of bottom ash in the cement industry	perform Stirring time 10, 20, 30, 60, 120 minute				
maastry					

The 26th Annual Conference of Japan Society of Material Cycle and Waste Management

[FA6] Measurement of the Potential Heat and Ash content of the Residue

from Mechanical Biological Treatment in Thailand Satoru Ochiai, Tomonori Ishigaki, Komsilp Wangyao, Masato Yamada

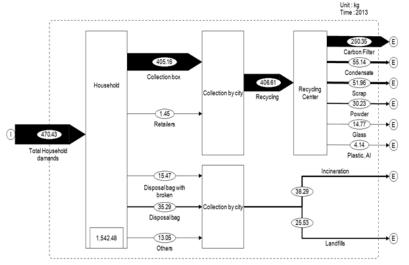
MBT process + Additional sieving



Substance Flow Analysis of Mercury in Fluorescent Lamps in Korea

Jonghyun Choi, Yeonjung Hwang, Yong-Chul Jang^{*} Chungnam National University

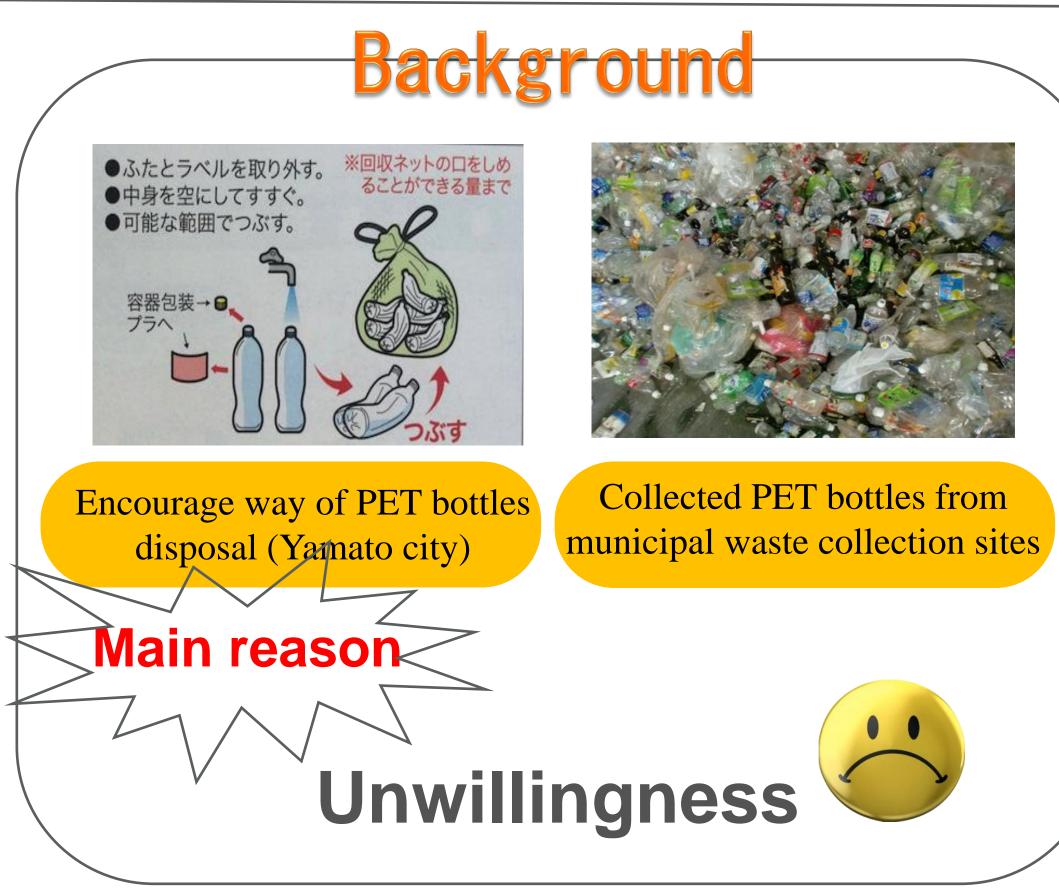
✤ Main Focus


- Minamata Convention 2013. agreed 1. With in mercury is gaining global concerns owing to its persistence in the environment and its effects significant negative human health on and the environment.
- 2. In Korea, the collection rate of mercury containing fluor escent lamps is about 25% of the total amount of the lamp manufactured. It is difficult to determine the distribution channels and disposal pathways of used fluorescent lamps in Korea.
- 3. Therefore, this study focused on the mass flow of mercury in fluorescent lamps in the extended producer responsibility (EPR) system in Korea by using substanc e flow analysis (SFA).
- 4. The system boundary for this study was defined in hous ehold sector from product manufacturing to waste recyc ling. And time boundary was limited to 1 year in 2013.

<Fig 1. Recycling targets of fluorescent lmaps in Korea EPR system>

Main Results

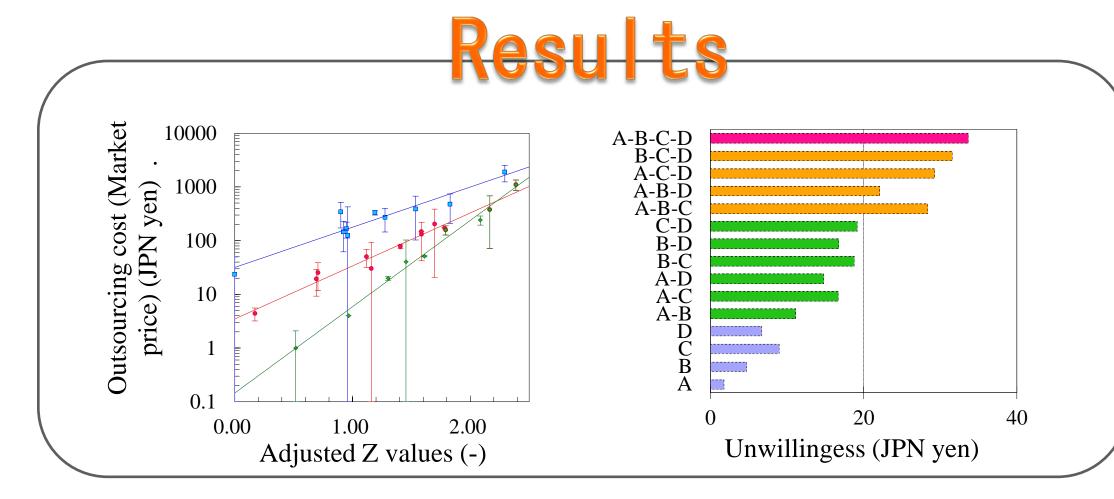
1. Fig 2. shows mass flow of mercury in fluorescent lamps in Korea based on result of MFA of fluorescent lamps (25mg Hg/tube).


<Fig 2. Substance flow of mercury in fluorescent lamps in Korea>

CNU충남대학교

- 2. Total household demands of mercury(FL) : 470 kg Stock of mercury(FL) in household : 11,542 kg Collected mercury(FL) by municipalities : 406 kg
 - Recovered by carbon filter : 250 kg
 - Remaining in condensate : 55 kg
 - Remaining in scrap : 52 kg

- Remaining in powder : 30 kg Incinerated mercury(FL) : 38 kg Landfilled mercury(FL) : 26 kg



Objective

Evaluate how much people feel unwillingness to dispose of PET bottles correctly.

The Republic Act (RA) 9003 in the Philippines: Factors for Successful Policy Implementation

(D.G.J.Premakumara, Simon Gilby, and Kyungsun Lee)

(1) Background

- Municipal Solid Waste Management (MSWM) is one of the serious environmental issues in the Philippines
- The Ecological Solid Waste Management Act of 2000 (the Republic Act - RA 9003) provides a national policy and legal framework to establish ISWM plans in Philippine Local Government Units (LGUs)
- However, its implementation and enforcement at LGUs is challenging with a limited number of success stories

(2) Objectives

• Identifies and discusses key challenges and factors that are required for successful national policy implementation at in LGUs.

(4) Lessons Learned

- Establishment of national SWM policies and strategies does not guarantee their automatic implementation in LGUs
- A lack of awareness and management, financial and technical capacities of the LGUs is generally deemed responsible for the low enforcement of national policies.
- There is a need of political support and locally relevant solutions which integrate technical, social/cultural, institutional and legal aspects while building on existing actors and assets.

(3) Methodology

 Reviews and discusses the current national framework and the experience of three case study cities in the Philippines

Ianila

• Interviews with key stakeholders

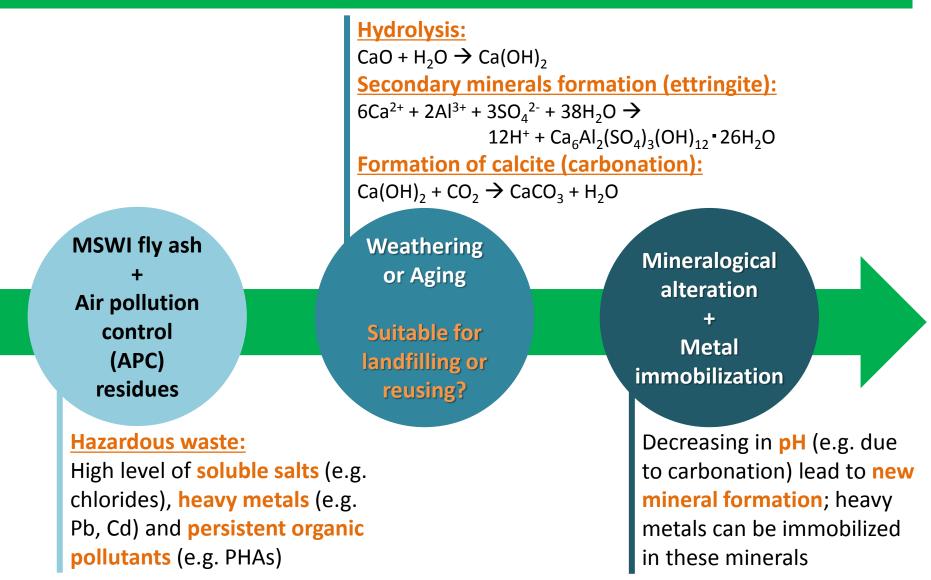
Santiago City, Luzon

- Population: 132,804 (2010)
- Daily MSW generation: 24 tonnes (2014)
- 10 Year SWM plan prepared in 2005 (in revision)

San Carlos City, Visayas

- Population: 133,000 (2010)
- Daily MSW generation: 17 tonnes (2014)
- 10 Year SWM plan prepared in 2010

(c) Google Maps


Cebu City, Visayas

- Population: 866,171 (2010)
- Daily MSW generation: 420 tonnes (2014)
- 10 Year SWM plan prepared in 2013

FA10: Weathering mechanisms of municipal solid waste incineration air pollution control residues: A state of the art review

Angelica Naka, Hirofumi Sakanakura National Institute for Environmental Studies

Capacity Development for Flood Waste Management in Vulnerable Asian Cities Ishigaki T., Tajima R., Kawai K., Kubota R., Lieu P.K., Yamada M., Towprayoon, S., Chiemchaisri C.

Flood damage in Tropical Asia

Prolonged inundation (Thailand 2011)

Tsunami (earthquake of Sumatra)

Typhoon (2013)

Waste generated during Flood

Wooden furniture/ home appliance damaged by inundation

Flowout households Disposal of daily waste by delaying of collection work

Guideline for appropriate management of flood waste for BMA

- Prediction of waste amount from flood damage
- Prevention of transfer station/ landfill damage
- Command system, Budget preparation
- Temporary storage site
- Collaboration with industries/ municipalities
- Dissemination

Capacity development workshop in Hue

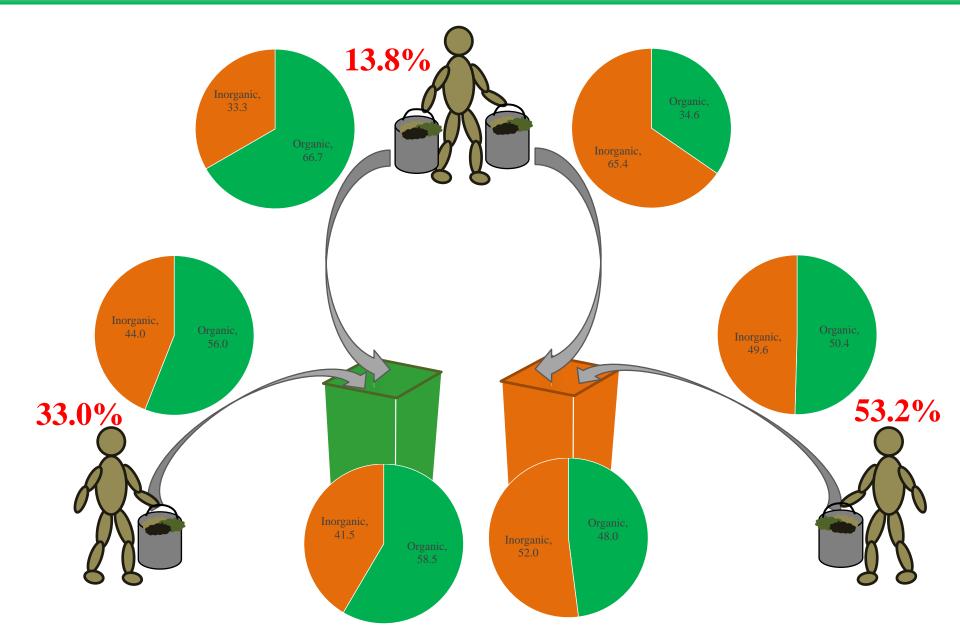
Group discussion by officer/practitioner in local gov.

Resilience Raising Pr evaluation Action/ Ca

Raising Preparedness Action/ Categorization Prioriti -zation

Resources -Finance -Vehicle -Treatment -Traffic infrastructure -Urban discharge

Planning


- Flood risk zoning
- -Respond plan
- -Training
- -FW database
- Warning system

Dissemination - Cooperation to FWM -damage prevention

FA-12 Monitoring source separation of household organic waste in Hanoi, Vietnam

O Kosuke Kawai¹⁾, Luong Thi Mai Huong²⁾

¹⁾ National Institute for Environmental Studies, Japan ²⁾ Institute for Urban Environment and Industry of Vietnam

Ministry of local government¹⁾

The objective of this study is?

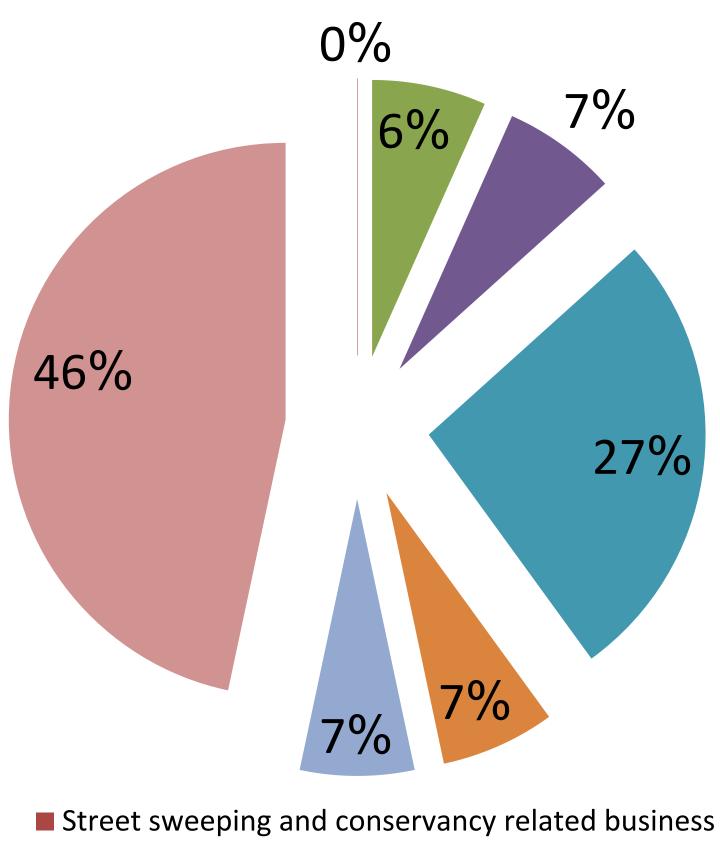
To conduct a survey of existing (PPP) practices and models at Palestinian local level (Joint service councils) in order to provide a descriptive background and real information to be used for further development of the PPP concept and framework.

Methodology

(MoLG) and (JICA), had conducted a survey for all 12 JSCs for SWM in West Bank area, Palestine; Hebron, Bethlehem, NW+N Jerusalem, NE+SE Jerusalem, Jericho, Ramallah-Albireh, Nablus, Salfeet, Qalquiliya, Tubas, Tulkarem and Jenin JSCs

1-75% of the councils believe that the existing laws (Investment Law, Tax Law) in Palestine are discouraging any kind of investment in public service

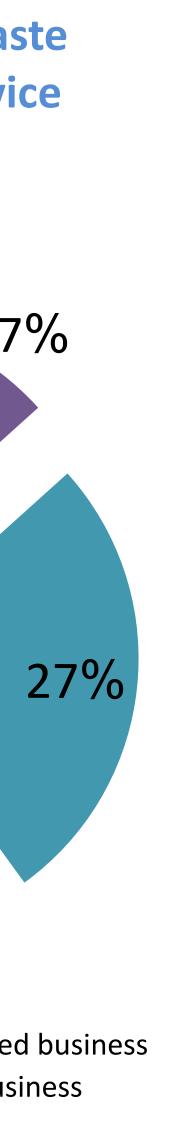
2- 80% of local government units (LGUs) in Palestine are lacking the necessary financial capacities and resources to promote partnerships with the private sector


3- 46% of the JSCs did not have any kind of partnership agreements with the private sector

Solid Waste Management and Public Private Partnership(PPP) in Palestine

Ziad Tawafsheh¹⁾,正) Mitsuo Yoshida²⁾

Result


(PPP) activities in solid waste management in joint service councils

- Waste collection and transportation business
- Picking and sorting of recyclables
- Material Recycling business
- Intermediate treatment business
- Dumpsite related business
- NO

Japan International Cooperation Agency²⁾

Recommendation

1- The laws should be revised or developed new laws under the consideration of PPP promotion strategy.

2- Improvement of financial state of LGUs and/or JSCs is key issue to promote PPP.

S-International Presses on Israel to immediately transfer to the Palestinian Authority all the value added tax and customs duties that it has collected on behalf of the Palestinians in order to payments progress to investors.

Reduce-Reuse-Recycle: Technology and Policy as a driving force for economic development in waste management system

Business opportunity: Recycling of plastic waste in Bangladesh

- Generating 21,000 jobs
- □ Saving expenditure of Tk3.08 crore by avoiding plastic waste
- □ Saving Foreign currency of US \$51 million/ year by avoiding import of virgin plastic.

Plastic waste recycling follows direct economic benefit

(a) Less landfilling requirement; (b) Large recycling industry jobs and economic output;(c)Direct savings of foreign currency

3R Developments in Asia: Informal Resource recovery and recycling

- Nearly 80 percent of the river's pollution is the result of raw sewage. The river receives more than three billion liters of waste per day.
- Highly contaminated leachate seeps untreated into groundwater, a source of drinking water....

Need for change and attitudes to view "Waste" as "Resource"

FB: Recycling

FB-1

Study on N₂O and CO₂ emission characteristic in accordance with the incineration of wood waste

Byeon EunSong, Park BiO, Jo GwangGon, Kalantarifard Amin, Yang GoSu

- This study is focused on emission characteristic of CO_2 and N_2O that converted from NO_x as basic research for estimating the emission factors of the biomass through the analysis of wood waste from domestic power plant.
- The NO_x emission was calculated in two ways to estimate the N_2O .
 - Based on obtained NO₂ concentration using TMS data.
 - Based on the percentage of nitrogen content in the fuel and incineration temperature.
- In order to analyze the degree of oxidation of waste wood, TMS measurements used to analysis the component.
 - CO_2 generation rate and the data from the O_2 value measured by the TMS calculate the CO_2 maximum(CO_2 max), which was based on degree of oxidation of CO to CO_2

Result

- TMS data showed the N₂O concentration with 221.5 ppm and 239.1 ppm while the theoretical analysis for these samples showed the relatively lower N₂O production with about 34.7 ppm and 51.9 ppm.
- Oxidation of waste wood is finally determined by using the previously obtained data and calculated values were more 99.9% for all samples.

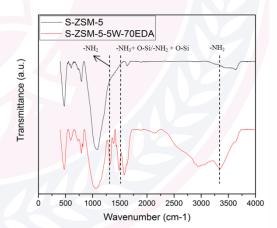
NO2 TMS DATA		-	sions from data		ssions by al method		S1	S2	S 3	S4	S5	S 6
32.6		NO _x	N ₂ O	NO _x	N ₂ O	C content (%)	51.53	52.08.	49.79	52.11	52.08	52.13
30	S1	533	58.7	331	36.4	CO (ppm)	2.9	10.2	10.1	5.6	8.8	9.3
	\$2	2013	221.5	315	34.7	O ₂ (%)	8.9	8.8	8.6	8.3	8.8	8.0
	S3	667	73.3	357	39.3	T (∘C)	927	891	890	923	988	830
φ.	S4	1800	198.0	347	38.2	CO ₂ generation	9.59	11.11	10.66	10.37	11.32	10.19
	S5	467	51.3	472	51.9	CO ₂ Max	15.45	15.15	14.56	13.73	15.15	12.92
S1 S2 S3 S4 S5 S6	S6	2173	239.1	264	29.0	Oxidation rate	99.99994	99.99998	99.99998	99.99995	99.99995	99.99992
					(un1t : pp1	n)						

Air & Greenhouse Gas Management Center

FB-2

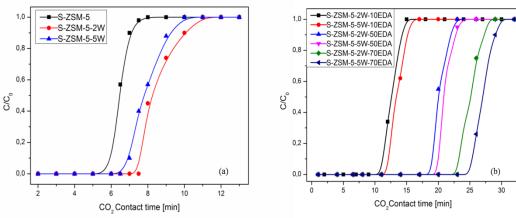
High CO₂ Adsorption on Improved ZSM-5 Zeolite Porous Structure Modified with Ethylenediamine and Desorption Characteristics with Microwave

Amin Kalantarifard, Jo Gwanggon, Jang Jihoon, Byeon Eunsong, Jang yuna, Yang Go Su


Introduction:

The effect of alkali earth metals, granite, bentonite and starch on the porosity and crystallinity of zeolite has been studied.

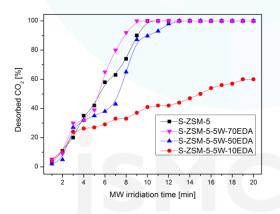
The maximum amine adsorption in synthesized zeolite obtained was 450 mg/g of zeolite.


 $\begin{array}{l} \text{CO}_2 + \text{R}_1\text{NH}_2 \longleftrightarrow & \text{R}_1\text{NHCOO}^- + \text{H}^+\\ \text{CO}_2 + 2\text{R}_1\text{R}_2\text{NH} \longleftrightarrow & \text{R}_1\text{R}_2\text{NCOO}^- + \text{R}_1\text{R}_2\text{NH}_2^+ \end{array}$

Results:


FT-IR spectra of S-ZSM-5 modified with EDA

Componen	nts S _{BET} (n	n ² /g)	Pore volume (cm ³ /g)					
		V total	V micro	V meso				
S-ZSM-5	705-7	0.662	0.378	0.26				



AGMC

The variations of adsorbent bed temperatures curves

CO₂ desorption efficiency from S-ZSM-5 zeolites _

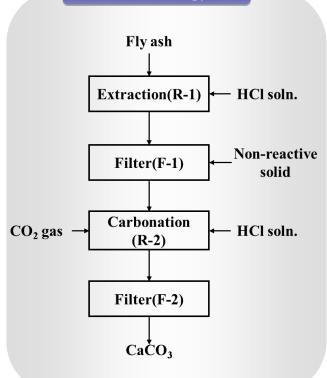
Air & Greenhouse Gas Management Center

FB-3

Calcium carbonate production from MSWI fly ash by indirect carbonation

Speaker : Hoyong Jo

Introduction


CaO

Most of MSWI fly ash disposed in a landfill, 2nd environment problem and lack of landfill site can be occur.

MSWI fly ash contain calcium and therefore it can be use as feedstock of mineral carbonation. vestigated.

Cl

Methodology

48.10 20.50 9.25 6.34 5.13 3.60 1.62 1.40 Table 2. The concentration of extracted solution from fly ash by ICP-OES

SO3

Table 1. The composition of MSWI fly ach as oxide form(by XRF)

K₂O

S/L		Con	centration(p	ppm)		Dissoution Rate ^{a)}	Extraction Efficiency ⁾	
	Ca	Fe	Al	K	Mg			
30g/L	7415.86	35.52	57.22	6131.14	266.27	0.98	0.74	
50g/L	11495.24	57.16	98.27	9803.71	427.41	0.92	1.15	
70g/L	12572.43	-		10744.49	248.12	0.71	1.26	

a) amount of dissolved Ca in sample (g) / amount of Ca in fly ash

Na₂O

b)dissolved Ca in sample(mol) x 2 / HCl (mol)

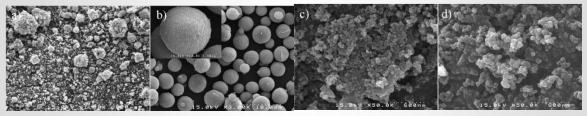


Figure 1. SEM image of fly ash and obtained CaCO₃. a)FA, b)30g/L, c)50g/L, c)70g/L

Results

SiO₂

MgO

Al₂O₃

Fe₂O₃

1.03

Others

3.04

FB-4

Production of calcium carbonate from desulfurization gypsum using MEA absorbent

Speaker : Min-Gu Lee

Introduction

CCS (Carbon Capture and Storage) is one of the best technology for carbon dioxide reduction. MEA (Monoethanolamine) is widely used absorbent in chemical absorption. We are trying to convert carbon dioxide into calcium carbonate using MEA absorbent and industrial waste which is desulfurization gypsum. The main objective of this research is to investigate possibility of calcium carbonate salts formation by converting carbon dioxide into ionic state and using metal cation extracted from desulfurization gypsum

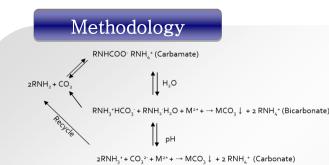


Fig 1. Mechanism of metal carbonate formation

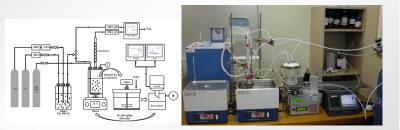


Fig 2. Schematics diagram of experiment apparatus

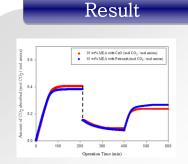


Fig 3. Carbon dioxide loading curve

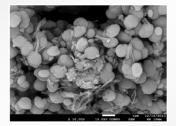


Fig 5. SEM image of produced calcium carbonate salt (CaO)

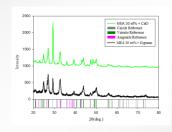


Fig 4. XRD data of generated products

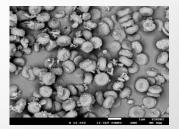


Fig 6. SEM image of produced calcium carbonate salt (Gypsum)

FB-5

Comparing the Performance of WEEE Recycling Systems in East Asia

Aya Yoshida, NIES (Japan), ayoshida@ies.go.jp

- We reviewed WEEE recycling systems in East Asian countries (China, Japan, Korea and Taiwan)
- Four systems are compared from the following aspects
 - Roles of actors: Financial, Physical responsibility
 - Performance
 - Convenience

Although our study is still on-going, preliminary results are

- Japanese and Taiwanese system achieve high volume of collection for large appliances, but not for smaller devices. Korean system achieves high collection rate for smaller devices.
- Common issues (competition with informal recyclers) 1

FB-6

Recycling and Current Management Practices of Used Batteries in Korea

Yeonjung Hwang, Yong-Chul Jang^{*} Chungnam National University

Main Focus

- In Korea, used batteries (e.g., manganese/alkaline manganese batteries, lithium battery, nickel-cadmium battery, silver oxide cell, nickel metal hydride battery) have been managed by the extended producer responsibility (EPR) policy since 2003(Manganese/Alkaline manganese batteries, Nickel metal hydride battery have been included in the EPR in 2008) to effectively collect and recycle them from consumers and to reduce of their negative effects on the environment.
- 2. This study presents the recycling and management practices of used batteries, especially focusing on material flow, physical and financial responsibility of used batteries in Korea.
- 3. The data required for this study was collected from the literature review, statistical data provided by the ministry of environment (MOE), discussion with the experts, survey and field visits to the local government office, MOE, recycling facilities.

Silver Oxide Cell	Lithium battery	Ni-Cd Battery	Carbon-Zinc, Alkaline MnO₂battery	Ni-MH Battery

<Fig. Recycling targets of batteries in Korea EPR system>

Main Results

1. Considering the present management status (physical, financial and end-of-life management) of batteries in Korea, the study proposes the need of stringent policy and awareness program for a better collection system.

2. The study also suggests the need of a better recycling methodology with highly advanced technologies to recover the various heavy metals and precious elements(e.g. Au, Ag and Li).

3. This study would further help decision makers to come up with an innovative policy for an effective management of batteries.

FB-7

Material Flow Analysis(MFA) and Actual Recycling Rate of Construction and Demolition Waste in Korea

Youngjae Ko, Yong-Chul Jang^{*}, Jonghyun Choi Chungnam National University

✤ Main Focus

CHUNGNAM

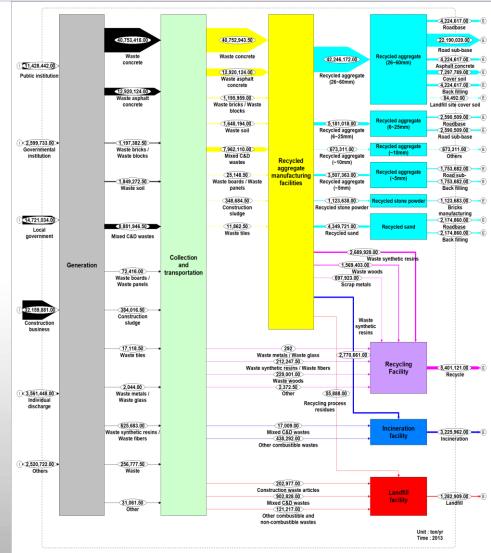
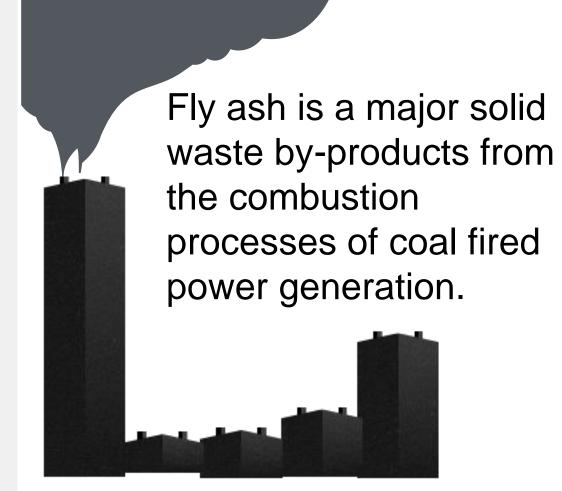
NATIONAL UNIVERSITY

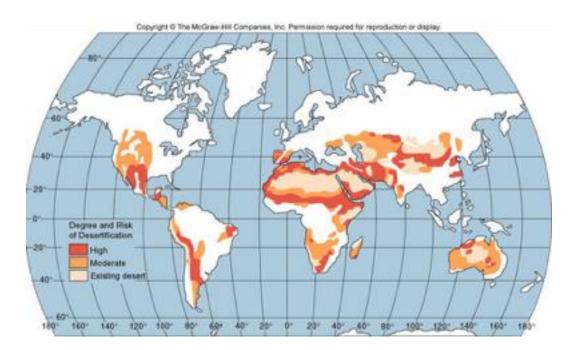
CNU

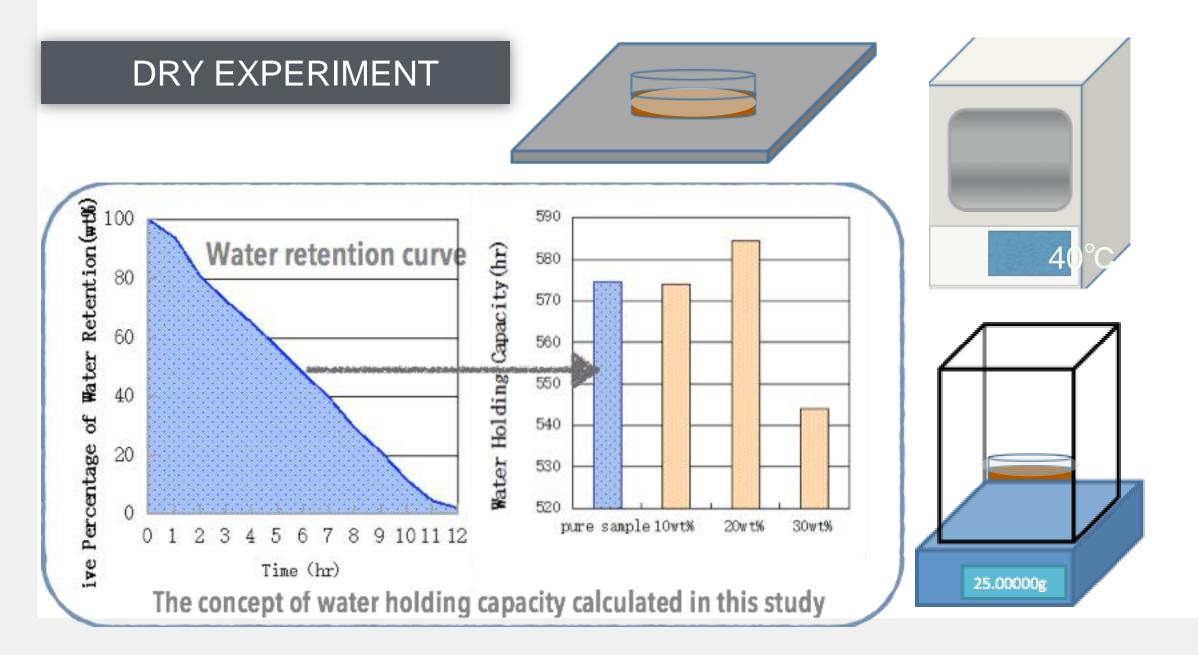
- 1. Estimate and analyze of the mass flow of C&D waste by life cycle stages(generation-recycling-disposal).
- 2. Data collection from surveys of site visit to C&D waste recycling facilities, National statistics published by the Korea Ministry of Environment and available literature.

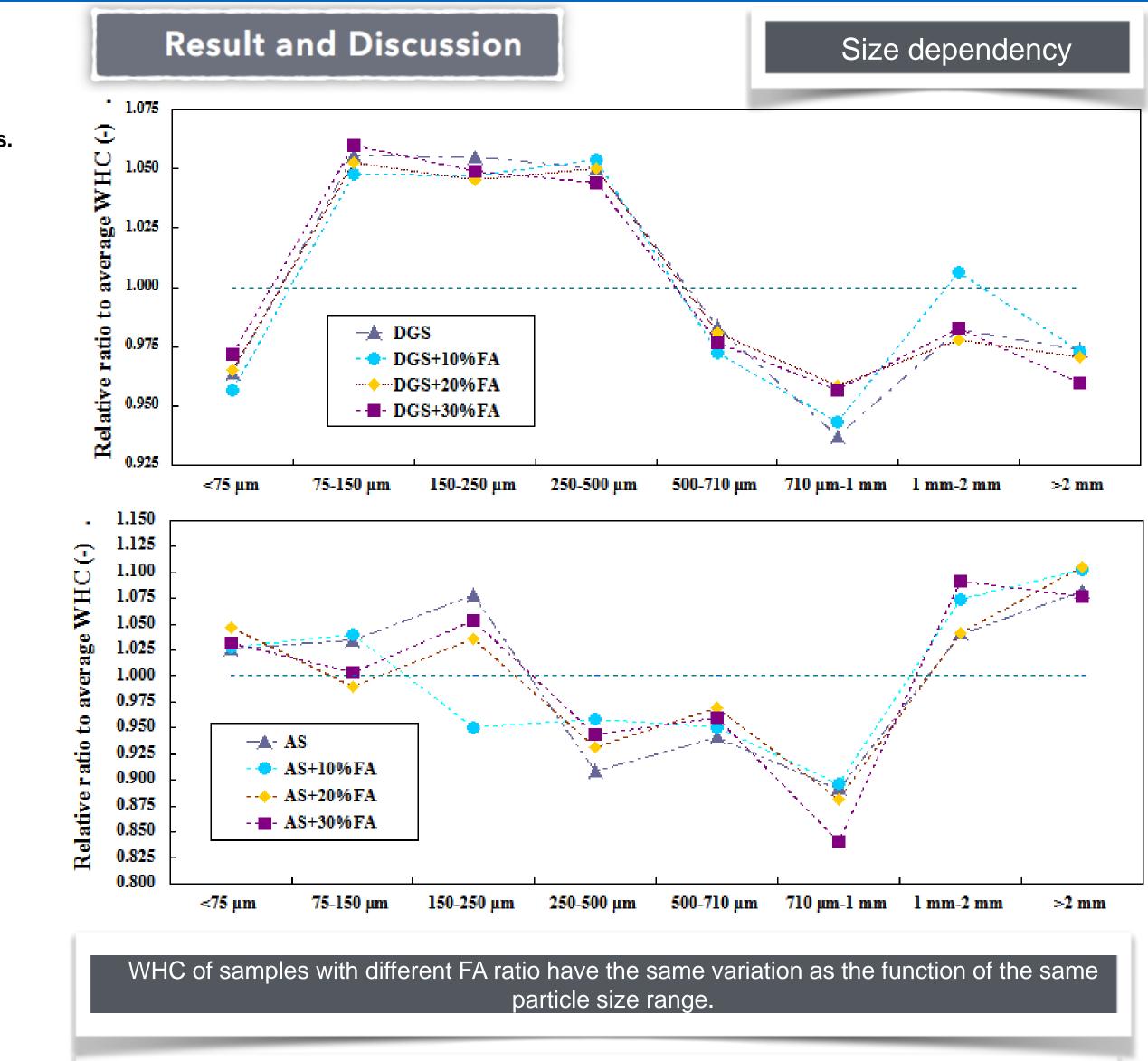
Result

- 1. In 2011, approximately 67,000 thousand tons of C&D waste were generated and approximately 65,000 thousand tons came into the C&D recycling facilities.
- 2. About 88% of C&D waste materials were recycled a s aggregate; about 12% were separated as foreign materials.
- 3. About 74% of the foreign materials were transported to other recycling facilities, while the remaining fraction (36%) was landfilled and incinerated.

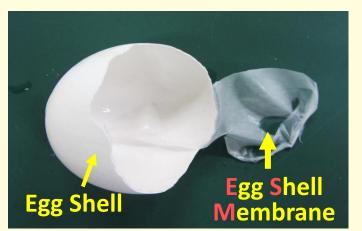

Fig.1 Material Flow of C&D waste in Korea


FB-8


soil particle size dependency of water holding capacity of soils amended with/without fly ash Mengzhu SONG¹ shenglei lin² fumitake takahashi³ tokyo Institute of Technology

Desertification is also a severe problem in arid areas. Some ameliorants to keep soil moisture is useful to increase soil productivity.

The Welch's t-test with 5 % significance level suggests that the difference of WHC between different particle size ranges is regarded as significant.



FB-9

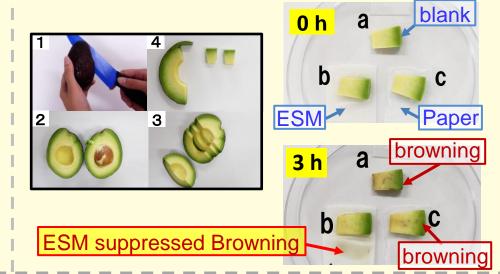
Effect of Eggshell Membrane on Limiting Food Discoloration FB-9 Nana KONISHI (小西那奈) ※ N.I.T., Yonago College ※

Our Study: Food Waste-Recycling

ESM has several functions

Exp.2: Enzyme Activity Inhibition

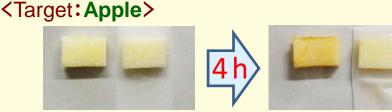
- (i) 0.1M phosphate buffer (ii) 2.5mM L-DOPA
- (iii) DMSO
- (iv) Sample solution



After setting introduced it into a cell whose light optical pass has 1cm (25 °C) to leave it at rest for 15 minute.

Exp.1:Suppression of Food Deterioration

Exp.3: Application



Liquid. N₂ pulverization

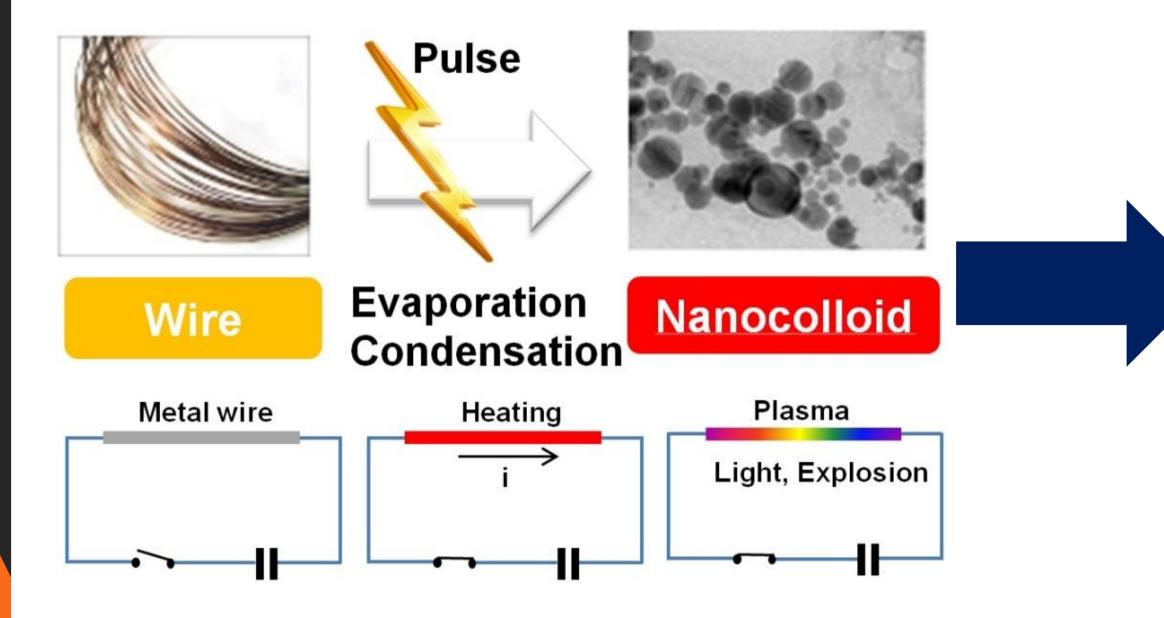
FB-10

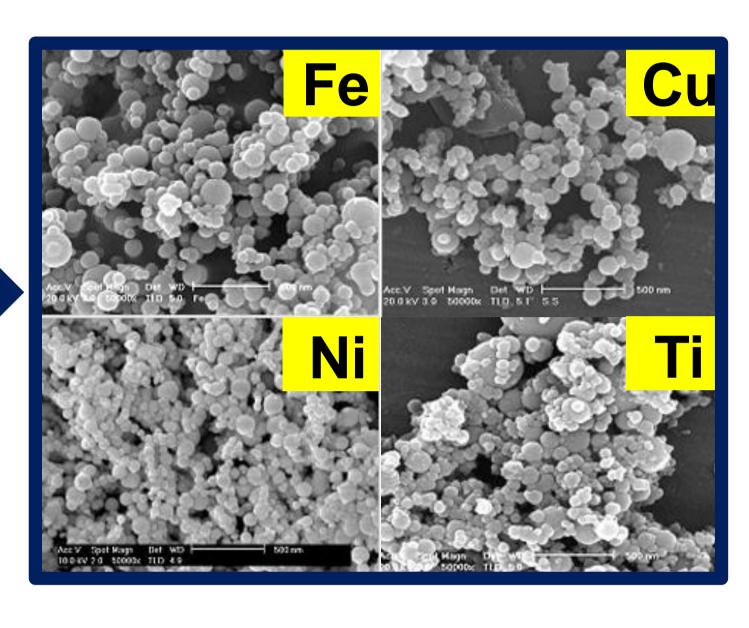
Fabrication of Nano-sized Copper Powders in Liquid Media Via High-Energy **Electrical Explosion Method: Use of High Purity Copper Recovered from** Waste Jelly-filled Cable as a Raw Material

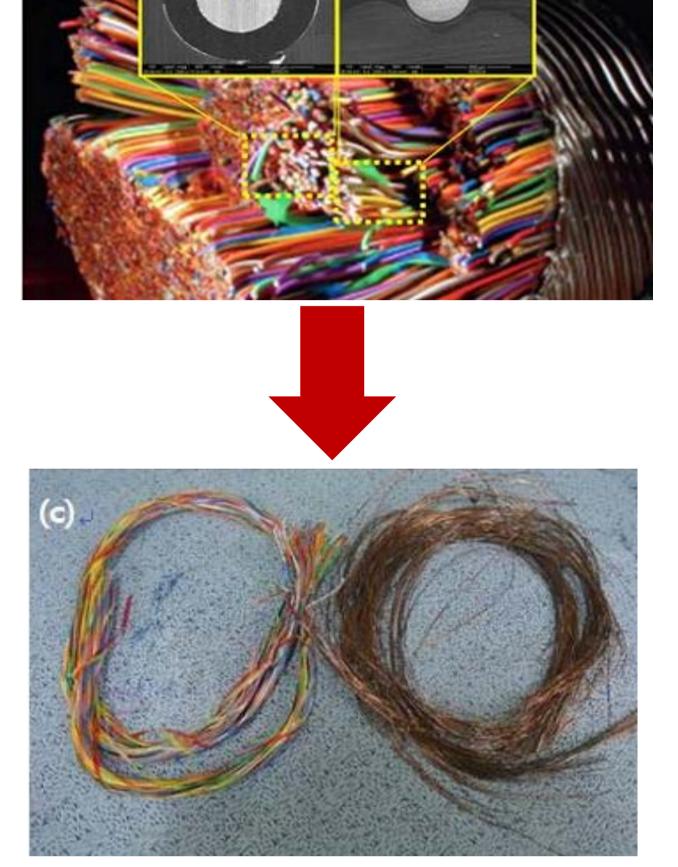
Sungkyu Lee*, Dukhee Lee, Soo-Young Lee, Sung-Su Cho, Sunghyun Uhm

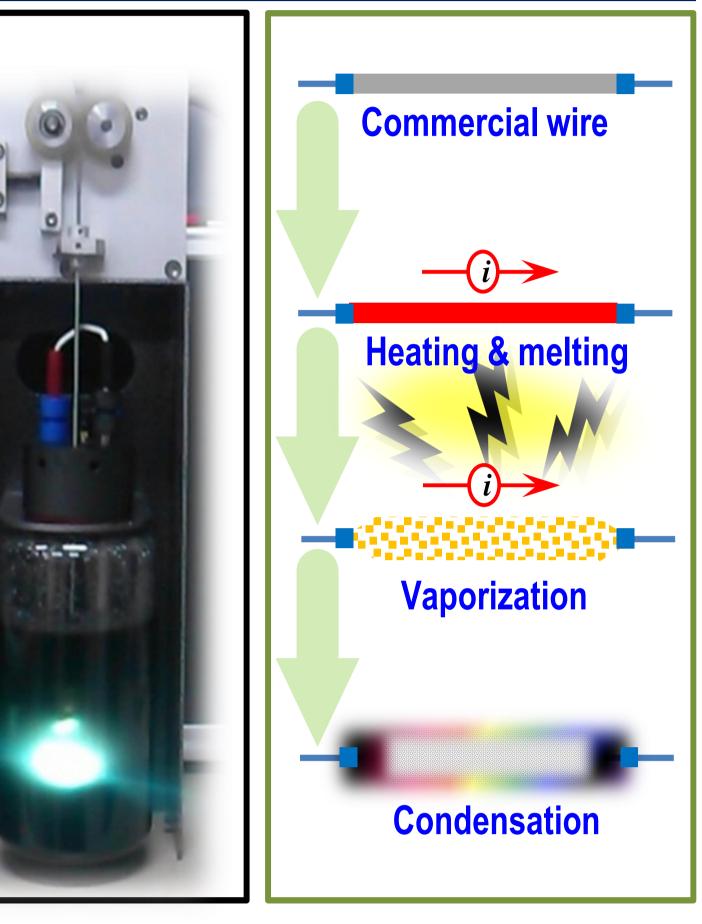
Plant Engineering & Advanced materials & Processing center, Institute for Advanced Engineering (IAE), Yongin 449-863, Korea

> TEL: + 82-31-330-7318 E-mail : sklee@iae.re.kr

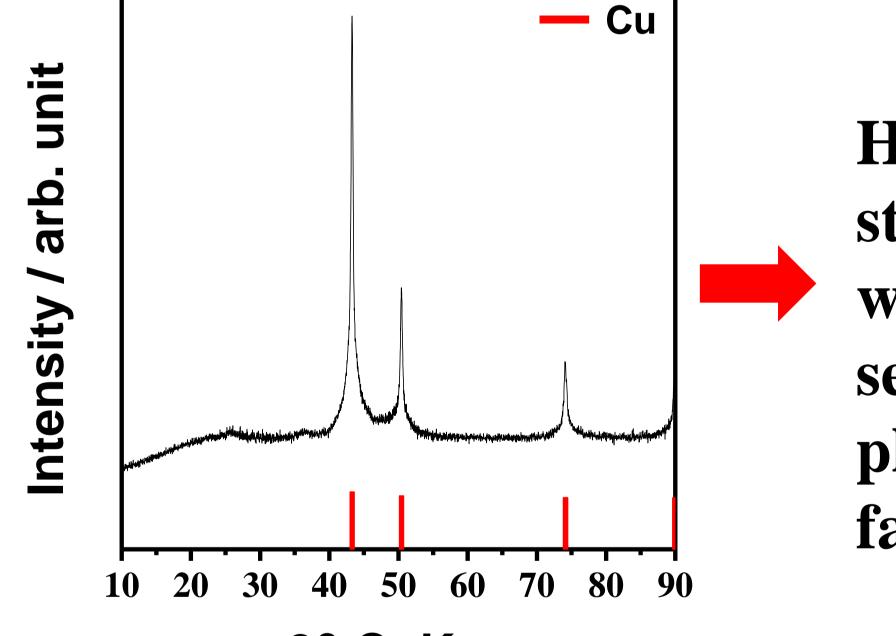



• Estimate of Korean Domestic Waste Jelly-filled Cable Wastes Accumulated to 6,500 Tons in 2008 **4,000** Tons of High Purity Copper Resources.

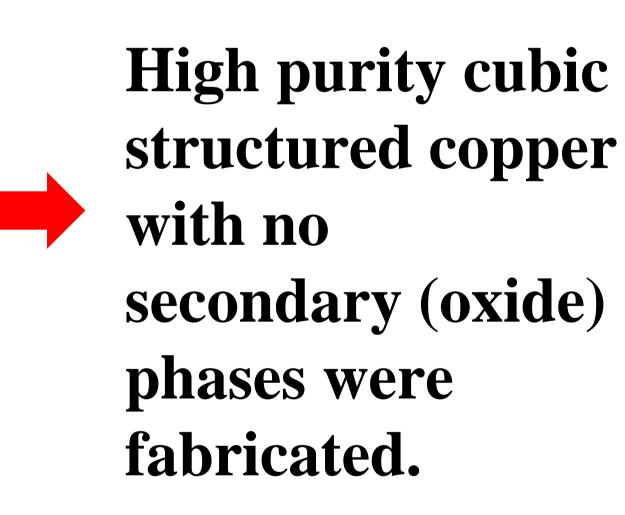


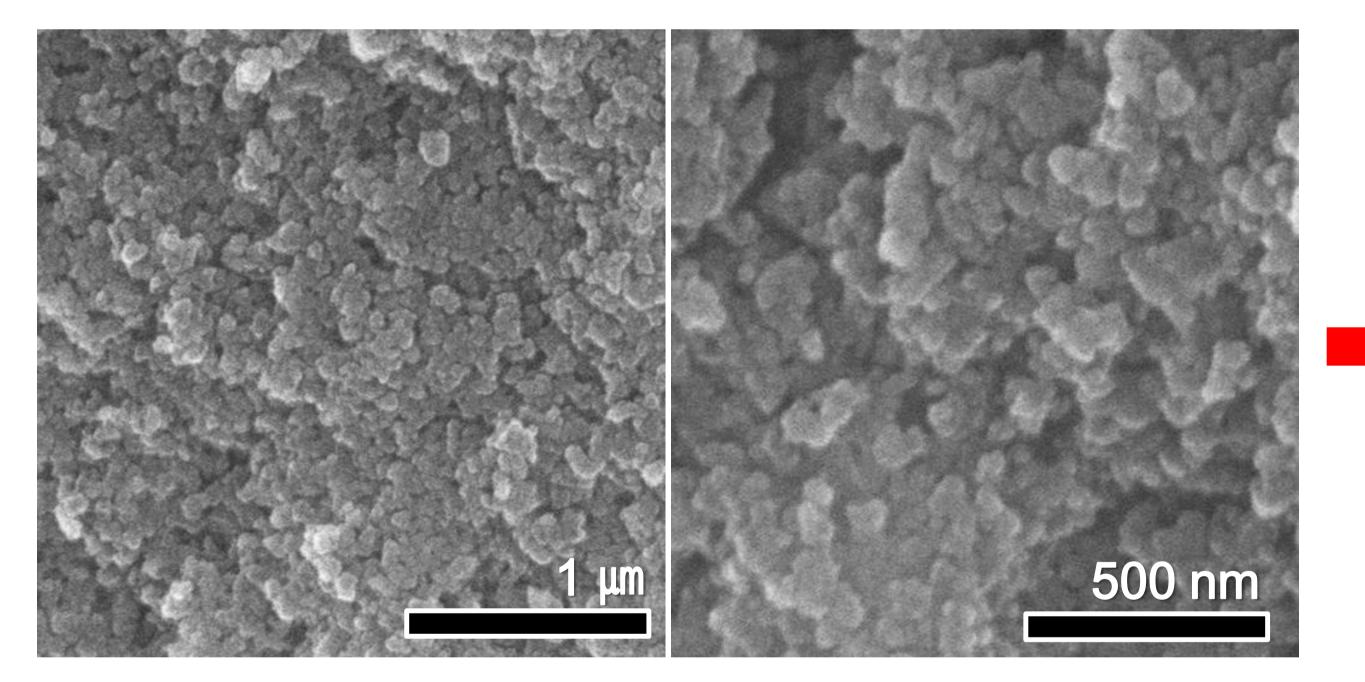


• Copper nano-powders are highly promising form of recycling copper-based jelly-filled communication cables via novel wire explosion in liquid media.

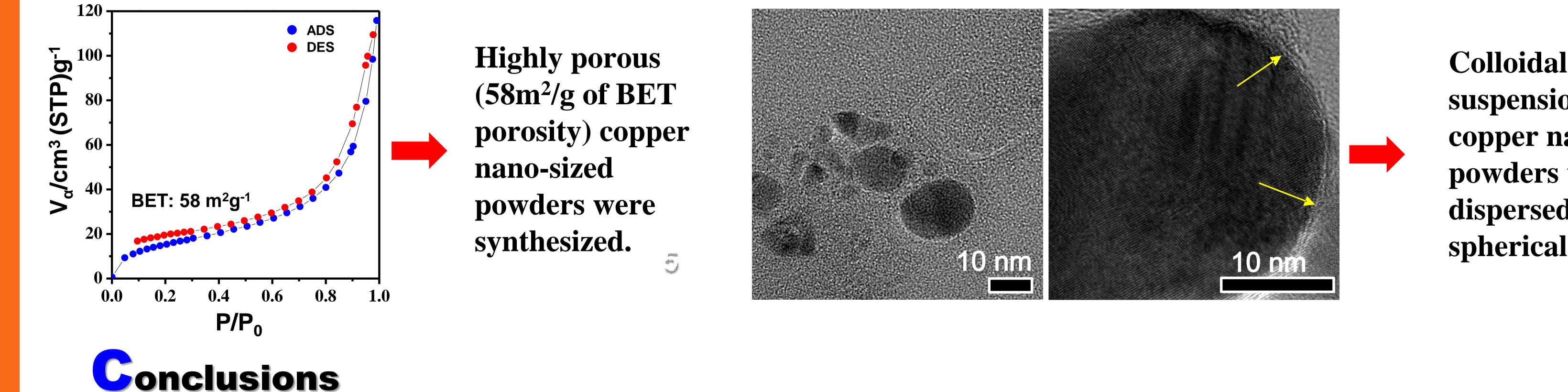


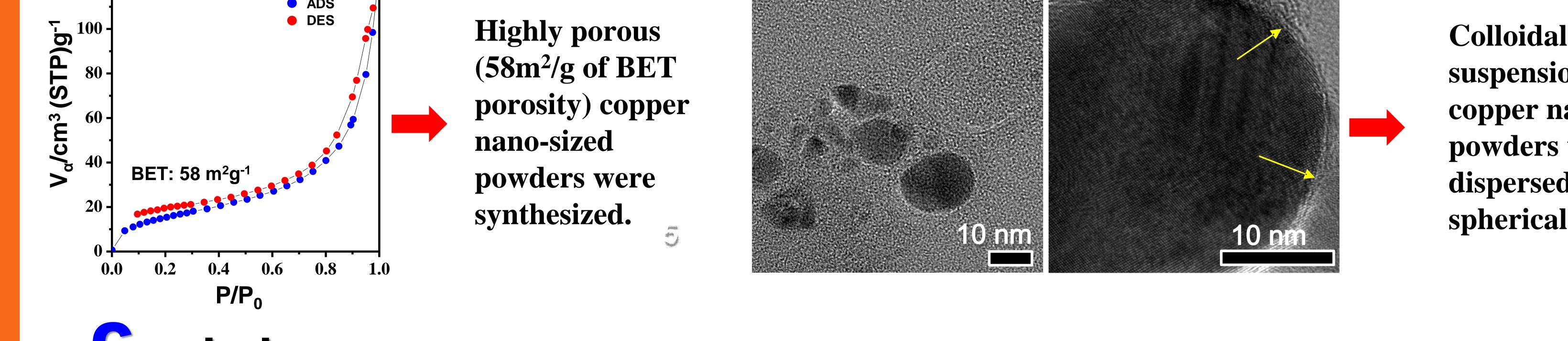
Synthesis	Synthesis conditions		
Wire diameter	0.8 mm		
Solution	Oleic acid		

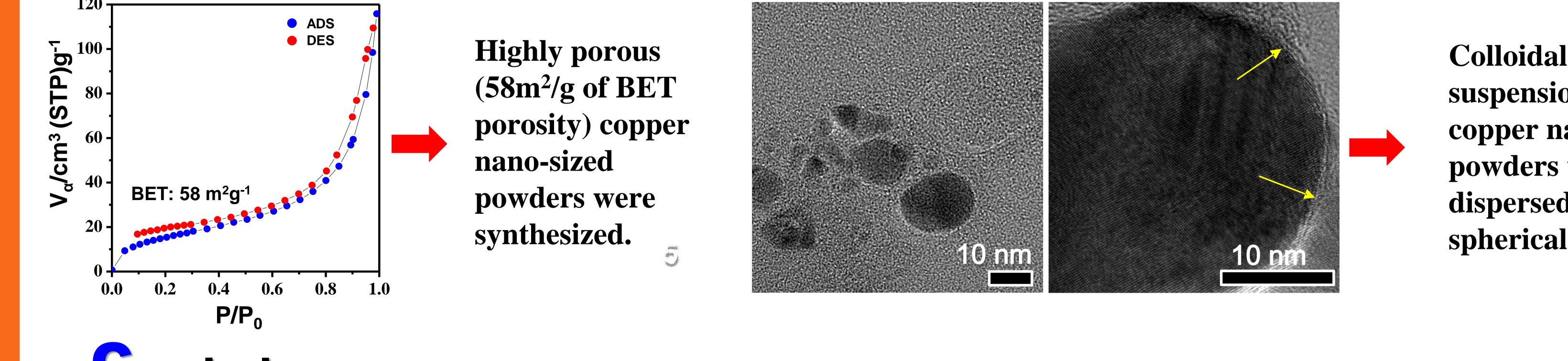


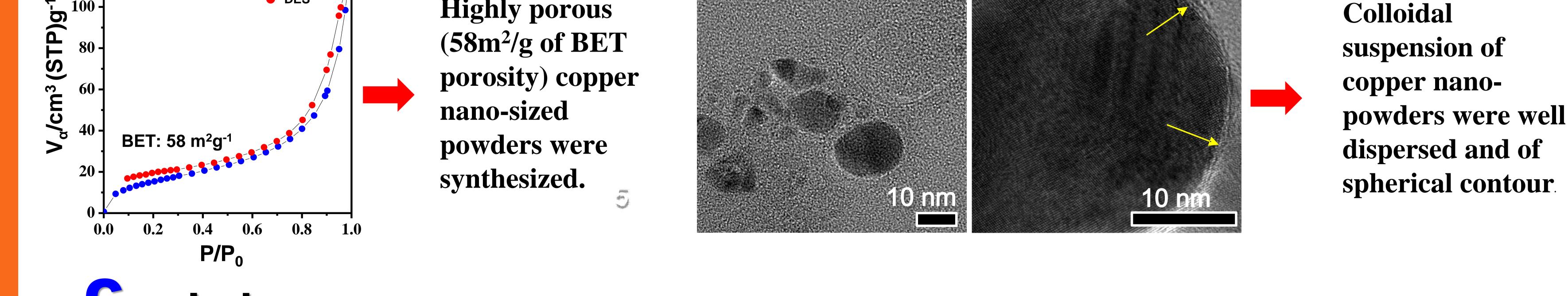


Feeding distance	40 mm	
Voltage	320 V	




2θ CuKα





50 nm-sized copper powders were fabricated without agglomeration

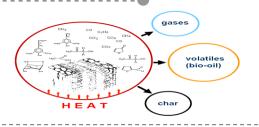
*Electrical explosion in oleic acid medium was optimized to synthesize nano-sized copper powders of less than 50 nm particle size.

Spherical particles of nano-sized copper powders were not agglomerated and the X-ray diffraction revealed peaks peculiar to cubic copper structure without any oxide phases.

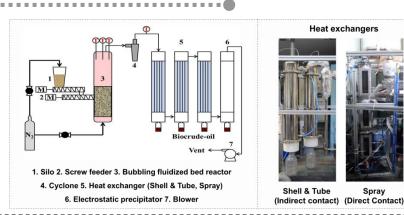
*The BET porosity of 58m²/g was regarded as superior to similarly synthesized copper powders in deionized water or ethyl alcohol medium.

FC: Thermal Treatment

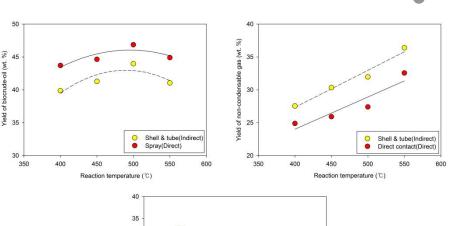
FC1: Cancelled


FC-2

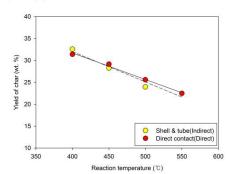
CONDENSATION PERFORMANCE OF TWO DIFFERENT HEAT EXCHANGERS FOR COLLECTING PYROLYZED OIL


• Jae Gyu Hwang, Hang Seok Choi*, Hoon Chae Park

Fast Pyrolysis Process



- Biomass can be converted to more valuable forms via thermochemical conversion process
- During fast pyrolysis, biomass is rapidly heated in anaerobic condition and is decomposed into biocrude-oil, char and gas.


Experimental apparatus

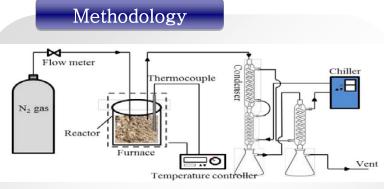
- Experimental apparatus consist of silo, screw feeder, bubbling fluidized bed reactor, cyclone, heat exchanger and electrostatic precipitator.
- Fast pyrolysis temperature was changed from 400 $^\circ\!C$ to 550 $^\circ\!C.$

Yield of products with reaction temperature

Conclusions

- The yield of products and properties of biocrude-oil were affected by the type of heat exchanger.
- The biocrude-oil yield of direct contact heat exchanger was higher than those of indirect type over all reaction temperatures. (about 3-4 wt. %)
- Compared to indirect contact condenser, direct contact condenser shown high quantity of biocrude-oil yield, and it shown high quality of biocrude-oil such as higher HHV, carbon content and viscosity.

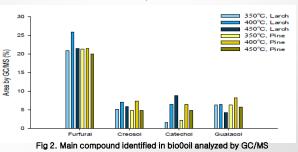
FC-3


Characteristics of bio-oil, bio-char production from lignocellulosic biomass under slow pyrolysis

Speaker : Dongwoo Kang

Introduction

Pyrolysis is a thermochemical conversion technology to produce bio-char, bio-oil and bio-gas through the thermal decomposition of biomass under anoxic conditions. The aim of this study is investigated producing the bio-oil, bio-char, and non-condensable gas from lignocellulosic biomass via slow pyrolysis at different temperatures. Chemical composition of bio-oil is analyzed using gas chromatography-mass spectrometry (GC/MS).


Fig 1. Mechanism of metal carbonate formation

Sample	Carbon (%)	Hydrogen (%)	Nitrogen (%)	Sulfur (%)	Oxygen ^a (%)	HHV ^b (MJ/kg)
Pine	50.80	6.33	0.21	0.53	42.13	18.77
Larch	47.17	6.92	0.31	0.66	44.94	17.90
^a by different ^b HHV(MJ/kg)= 0.3383(C of wt%)+1.443[(H of wt%) - (O of wt%)/8]+0.0942 (S of wt%)						

Result						
	C (%)	H (%)	N (%)	S (%)	O ^a (%)	HHV ^b (MJ/kg)
350℃	76.63	4.2	0.34	0.25	18.58	28.66
400 ℃	82.95	3.77	0.33	0.23	12.72	31.23
450℃	84.2	3.43	0.49	0.31	11.57	31.38
350℃	76.69	5.46	0.5	0.44	16.91	30.81
400℃	80.31	4.31	0.26	0.32	14.8	30.75
450℃	84.87	4.01	0.19	0.31	10.62	32.61
	400℃ 450℃ 350℃ 400℃	C (%) 350°C 76.63 400°C 82.95 450°C 84.2 350°C 76.69 400°C 80.31	C (%) H (%) 350°C 76.63 4.2 400°C 82.95 3.77 450°C 84.2 3.43 350°C 76.69 5.46 400°C 80.31 4.31	C (%) H (%) N (%) 350 °C 76.63 4.2 0.34 400 °C 82.95 3.77 0.33 450 °C 84.2 3.43 0.49 350 °C 76.69 5.46 0.5 400 °C 80.31 4.31 0.26	C (%) H (%) N (%) S (%) 350°C 76.63 4.2 0.34 0.25 400°C 82.95 3.77 0.33 0.23 450°C 84.2 3.43 0.49 0.31 350°C 76.69 5.46 0.5 0.44 400°C 80.31 4.31 0.26 0.32	C (%) H (%) N (%) S (%) O ^a (%) 350 °C 76.63 4.2 0.34 0.25 18.58 400 °C 82.95 3.77 0.33 0.23 12.72 450 °C 84.2 3.43 0.49 0.31 11.57 350 °C 76.69 5.46 0.5 0.44 16.91 400 °C 80.31 4.31 0.26 0.32 14.8

a by different

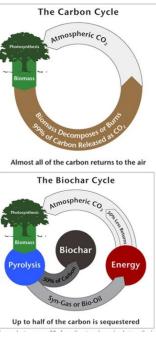
^b HHV(MJ/kg)= 0.3383(C of wt%)+1.443[(H of wt%) - (O of wt%)/8]+0.0942 (S of wt%) Table 2. Ultimate analysis of bio-char.

FC-4

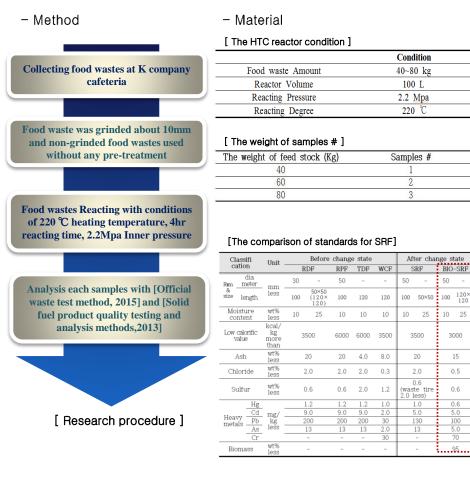
The Characteristics of Bio-char by grinding of the food waste

WonDuck Chung¹⁾, Woo Ri Jo¹⁾, Minah Oh¹⁾, Sung-Yeol Yun¹⁾, Seong-Kyu Park²⁾, Jai-Young Lee¹⁾

¹⁾ Dept. of Environmental Engineering, The University of Seoul, Korea


²⁾ KofirstR&D center, KF E&E Co.Ltd, Korea

O Introduction


The amount of food waste in Korea is increasing every year. Despite food waste contain a large amount of valuable organic resources, its recycling is low because of high moisture contents and sodium.

In this study, bio-char was produced by Hydrothermal Carbonization (HTC) that is one of the thermal decomposition methods. HTC is a method of carbonization with water-containing of biomass in a completely sealed reactor. So, It is advantageous process for treatment of food waste in Korea. At this moment, the bio-char produced in the hydrothermal carbonization reactor of pilot scale, was studied whether or not in the grinding of the food waste.

O Material & method

BIO-SRF

50

10

25

3000

15

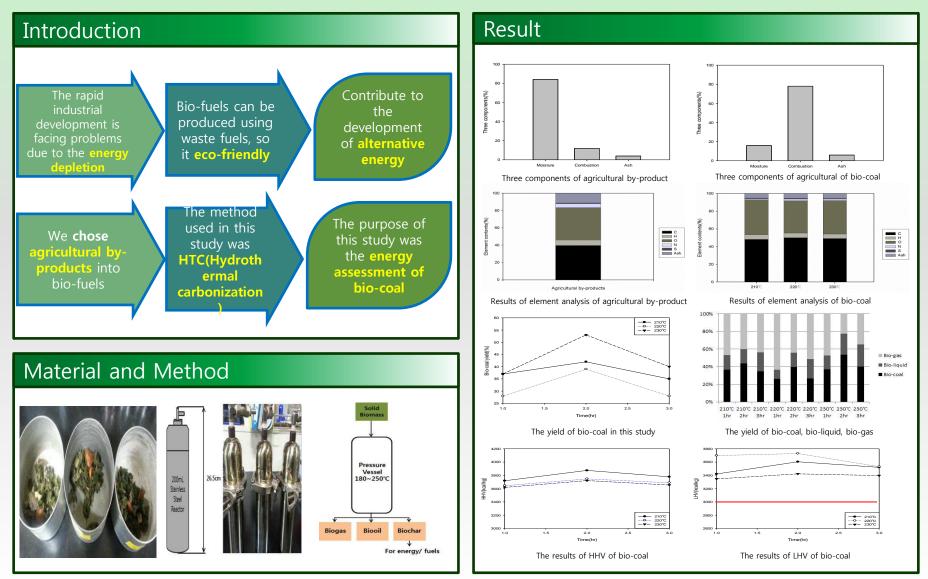
0.5

0.6

100 5.0

70

95


FC-5

The University of Seoul

A study on the characteristics of the bio-coal using agricultural by-products

Jin Gwan Kim¹, Min-Jung Kim^{1,3}, Kyoung-Joo Park¹, Jong Bin Kim¹, Seong-Kyu Park², Jai-Young Lee¹

¹Dept. of Environmental Engineering, The University of Seoul ²Kofirst R&D center, KF E&E Co.Ltd ³Resource Recirculation Research Division, National Institute of Environmental Research

FC-6

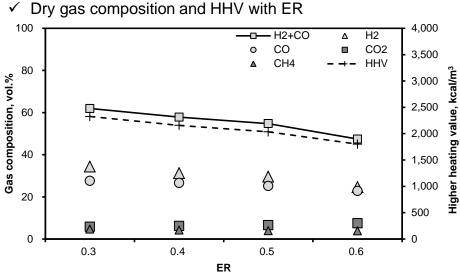
Study on a Fixed Bed Gasification of Polyurethane SRF from Electronic Waste


Jae-Jun Kang Yong-Chil Seo*, Jang-Soo Lee, Won-Seok Yang, Se-Won Park, Md. Tanvir Alam

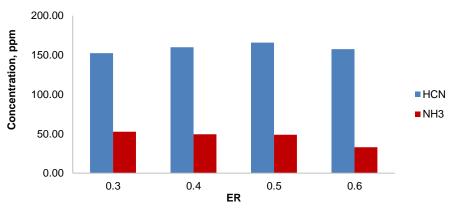
Feedstock

Elemental analysis(wt. %)		Proximate analysis(wt. %)		
С	63.88	Moisture	1.86	
Н	6.34	Volatile	82.91	
0	15.21			
Ν	6.59	Fixed-C(carbon)	10.18	
S	ND	Ash	5.05	
Cl(ppm)	1350	Higher heating value(kcal/kg)	6,128 – 7,542	

Schematic diagram


[1. air supply, 2. air controller, 3. MFC(Mass flow controller, 4. feeder, 5. feeding pipe, 6. furnace, 7. cyclone, 8. residue collector, 9. scrubber, 10. fabric filter, 11. water pump, 12. filtering system (1), 13. filtering system (2), 14. gas vacuum pump, 15. syngas controller, 16. micro GC, 17. peristaltic pump, 18. steam generator, TC-thermocouple]

Operating condition


Feedstock	Polyurethane SRF	2 4
Temperature	1000 °C	F
ER(Equivalent Ratio)*	0.3, 0.4, 0.5, 0.6	1
Feeding rate	10 g/min	3
Particle size of feedstock	< 1 mm	23
Gasification agent	Air	-

* Equivalent ratio was calculated as the ratio of air supplied to air required for complete stoichiometric combustion of feedstock

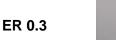
Results ✓ Dry gas con

✓ Gaseous pollutant(N) with ER

FC-7

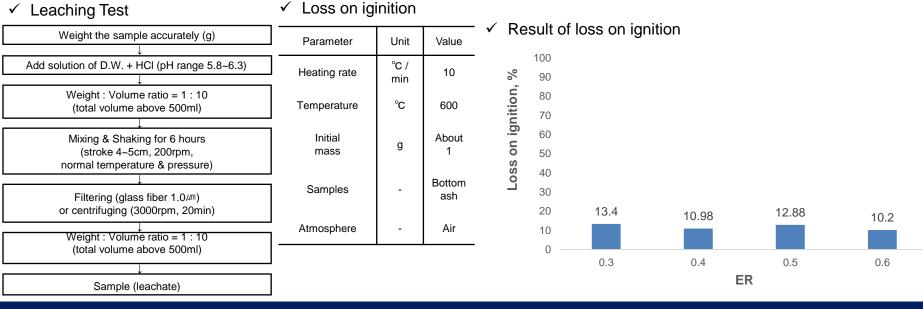
Environmental Assessment of Polyurethane Gasification Residue

ER 0.4


ER 0.6

Md. Tanvir Alam, Jang-Soo Lee, Won-Seok Yang, Se-Won Park, Jae-Jun Kang, Yong-Chil Seo*

Sample (bottom ash)


ER 0.5

Experimental Method

■ Results
✓ Result of

Heavy Metal	Standard	ER 0.3	ER 0.4	ER 0.5	ER 0.6
As	< 1.5	0.1	0.2	0.2	0.1
Cd	< 0.3	ND	ND	ND	ND
Cr	< 1.5	ND	ND	ND	ND
Cu	< 3	ND	ND	ND	ND
Hg	< 0.005	ND	ND	ND	ND
Pb	< 3	ND	ND	ND	ND

FC-8

A study on pyrolysis characteristics of torrefied biomass O Ho Seong Yoo, Hang Seok Choi*, Byeong Kyu Lee

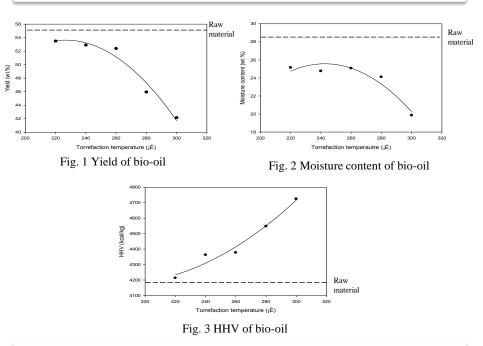
Department of Environmental Engineering, Yonsei University

Biomass Torrefaction and Pyrolysis

- Biomass is eco-friendly and carbon neutral fuel, but it has high moisture and volatile matter.
- Torrefaction is pre-treatment process of pyrolysis or gasification. It can moisture and volatile matter of biomass.
- Torrefaction were perfromed with changing temperature range
 - 220~300 $^{\circ}$ C. After torrefaction, torrefied biomass was pyrolyzed.

Torrefied

biomass

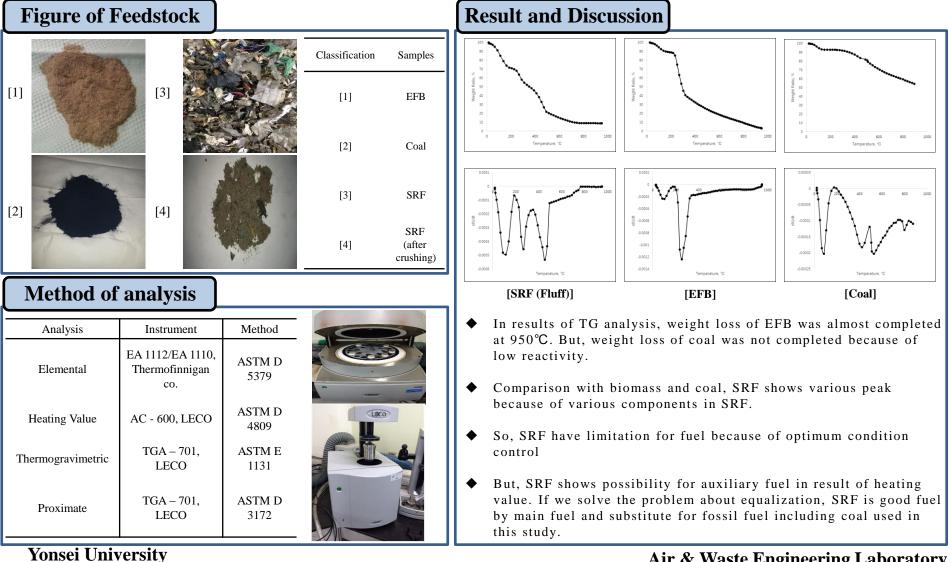

Dry biomass

Experiments

Pyrolysis condition			
Temperature	500 ℃		
Inner gas	Nitrogen		
Time	2 sec		
Material	Raw Sawdust, Torrefied sawdust		
Feeding rate	1kg/hr		

Results

Conclusion


.

- Torrefaction decreases yield of bio-oil.
- Torrefaction increases HHV and decreases moisture content of bio-oil
- The fuel quality of pyrolyzed bio-oil is remarkably improved by torrefaction.

FC-9

For Waste to Energy, Assessment of Fluff Type SRF (Solid Refuse Fuel) by Thermal Characteristics Analaysis

Se-Won Park¹, Yong-Chil Seo¹, Jang-Soo Lee¹, Won-SeokYang¹, Jae-Jun Kang¹, Md. Tanvir Alam¹

Air & Waste Engineering Laboratory

FD: Treatment Technology and Landfill

FD-1

Estimation of oxidation factor of methane using landfill gas concentrations from vent pipes and surfaces in the W landfill, Korea

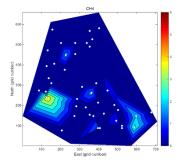
<u>Sangjae Jeong¹</u>, Anwoo Nam², Tae Hoon Kim² and Jae Young Kim[‡], ¹) 1)Seoul National University 2) Korea Environment Corporation

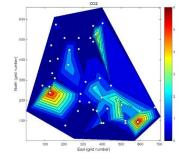
Purpose

Evaluating methane oxidation factor by comparison of landfill gas composition between landfill surfaces and vent pipes

Materials and Methods

- CH₄ and CO₂ fluxes are observed in the W landfill
- Spatial interpolation is conducted on surface measurement results
- OX is evaluated with Eq. (1)


$$OX = \frac{(R_{v} - R_{s})}{R_{v} \times (1 + R_{s})}$$
 Eq. (1)

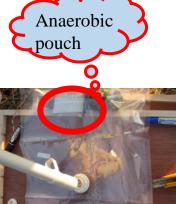

Where,

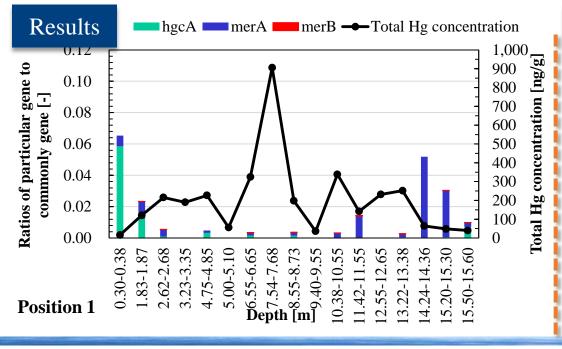
OX = Oxidation factor (fraction), $R_v = {}^{C_{CH_4}}/{}_{C_{CO_2}}$ at vent pipe (fraction), $R_s = {}^{C_{CH_4}}/{}_{C_{CO_2}}$ at surface (fraction)

Results

- The oxidation factor was 4.8 to 7.3 times higher than the default value of IPCC guidelines
- Oxidation factor is varied depend on the statistics which we use

Laboratory of Waste Management and Resource Recirculation, Department of Civil and Environmental Engineering, College of Engineering, Seoul National University


FD-2


Depth characteristic of mercury in a landfill site of Japan

Mercury (Hg) is a persistent environmental pollutant of high toxicity. Hg can be transported **long distances** within the environment, and **methyl mercury** is so neurotoxic that can be bio accumulated by animals like fish via food chain.

In this study, we sampled in a landfill site in Japan and plan to understand what happens in old Hg containing waste inside the landfill site, which will suggest useful information on long-term disposal of Hg waste in the future.

○ **Jing YANG** ¹), Akira Sano²), Ryuji Yanase³), Masaki TAKAOKA^{1), 2})

1) Graduate School of Eng., Kyoto University; 2) Graduate School of Global Environmental Studies, Kyoto University;

3) Environmental Protection Center, Fukuoka University

Summaries

In the three positions, the **total mercury** concentration is presented to be **lower** than that in deeper places approaching the ground surface, and shows a high concentration between 5-15m.

*hgc*A gene was detected highly at 0.30-0.38 m. This result indicates that surface layer in landfill becomes anaerobic condition. Gene of *mer*B was not detected at all samples which indicates that demethylation is difficult to occur.

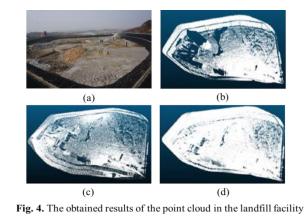
FD-3

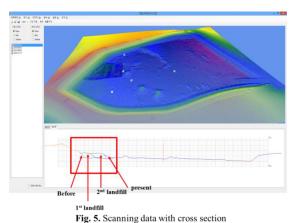
Development of landfill management system using 3D measurement system

Jong-Yun Kang, Jin-Kyu Park , Sung-Youn Cho, Kyung Kim , Nam-Hoon Lee

This study presents the waste volume calculation method using the point cloud of the surface of 3 dimensional objects based on 3 dimensional laser scanner.

The system has been installed a landfill facility in Ansung city in Korea.


The calculation method of the waste volume


- At first, laser scanners collect the point clouds of landfill facility by the command of the P.C. server.
- Second, the laser scanners send them to the P.C. server, which aligns the coordinate of the point clouds to have the same coordinate and it merges them to be one point cloud file. The uniform grid meshing is applied to the merged point cloud and the calculation of the volume is performed referring the initial shape of the landfill facility.
- Finally, the calculated volume is sent to the GIS server, which records periodically the volume history of the waste.

The proposed system periodically collects the volume of the waste from the landfill facility and sends it to the GIS in the landfill facility.

Fig. 3. The appearance of the developed laser scanner based on robot technique

FD-4

Estimation of methane emission flux at landfill surface using laser methane detector

The aim of this study : The possibility of measuring methane mission fluxes, using surface methane concentration and gauge pressure, as well as the correlation between the methane emission flux and surface methane concentrations

Method : The surface methane concentration was measured using a laser methane detector (LMD).

Results : - A positive linear relationship between the surface methane concentration and the methane emission flux (Fig. 1)

- The methane emission flux showed a positive linear relationship with the gauge pressure (Fig. 2).
- The median of the vertical permeability for cover soil : 5.54 $\times ~10^{-10}~m^2$

Conclusion : When the surface methane concentration and the surface gauge pressure are measured simultaneously, the methane emission flux can be calculated using Eqs.(1) and (2).

$$F_{v} = \frac{K_{z}}{u} \left(\frac{Pg}{\Delta z}\right) \tag{1}$$

Where, F_{v} : Volumetric methane emission flux (m³/m²/s)

 P_g : the gauge pressure (Pa)

u: the viscosity of methane (Pa·S),

 Δz : the thickness of surface coverage of landfill (m),

 K_z : the vertical permeability of surface landfill (m²).

$$F = F_v \times C_s \tag{2}$$

Where, F: Methane emission flux $(g/m^2/d)$

Cs: Surface methane concentration (mg/m³)

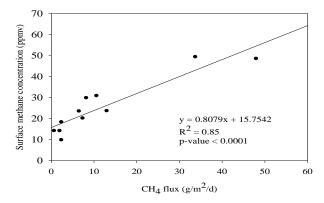


Fig. 1 Correlation between methane emission flux and surface methane concentration

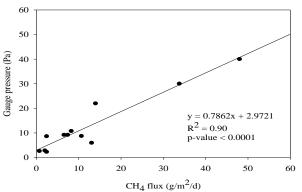


Fig. 2 Correlation between methane emission flux and gauge pressure

FE: Hazardous Waste

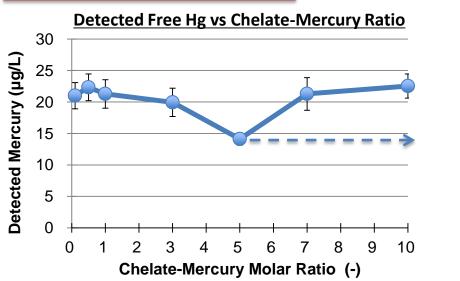
FE-1

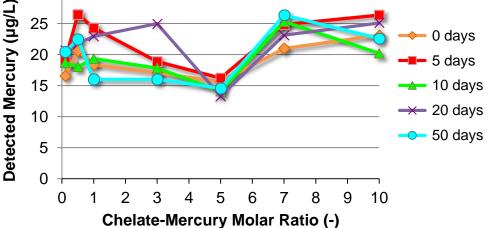
Mercury immobilization for municipal solid waste incineration (MSWI) fly ash by chelate treatment Fong, Cheng Lip (Tokyo Institute of Technology)

- incineration of MSW is the main method of disposal in Japan
- Residues in the form of ashes
- Fly ashes more toxic

In 2011, post chelate-treated fly ash from a Nagano incinerator found to have leached Hg exceeding 0.005mg/L!

30


Material/Method


The Cold Vapor Atomic Absorption Spectrometry

- reduction vaporization using Tin (II) Chloride as a reducing agent
- $C_2H_5)_2NCS_2Na \cdot 3H_2Oas$ chelate
- HgCl₂ in 0.1mol/L HNO₃

Detected Free Hg vs Chelate Storage Time

