第35回 廃棄物資源循環学会 研究発表会 廃棄物焼却研究部会『脱炭素社会に向けた一般廃棄物焼却施設のあり方』 2024年9月11日

CO。削減シナリオの感度分析

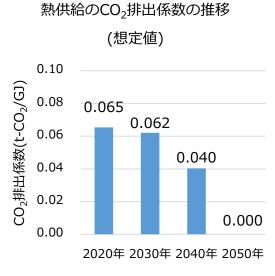
廃棄物資源循環学会 廃棄物焼却研究部会 岩村 宗千代 (川崎重工業(株))

目次

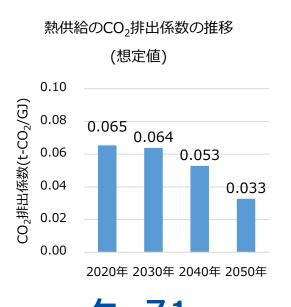
1. CO₂排出係数の感度分析

2. バイオプラスチック割合の感度分析

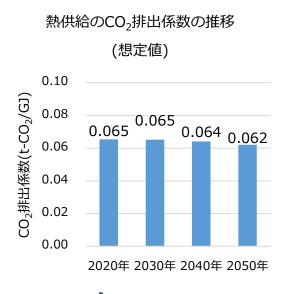
3. まとめ


1. CO₂排出係数の感度分析

CO₂排出係数感度分析の前提条件

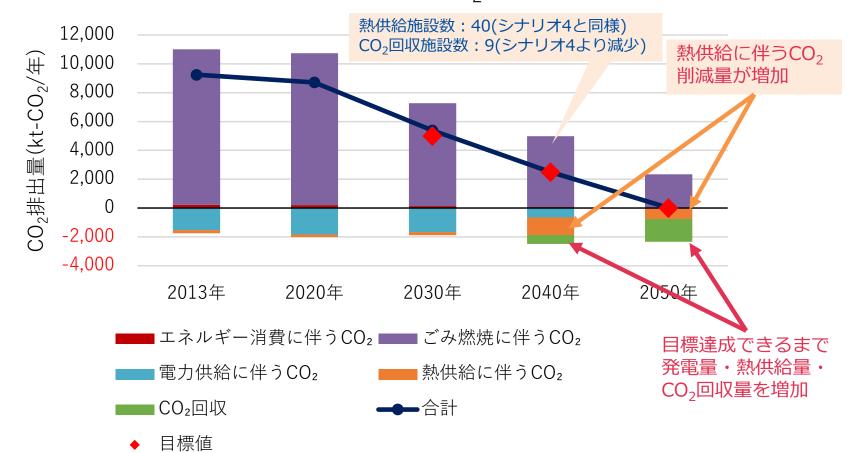

熱供給のCO₂排出係数

本検討では、熱供給のCO₂排出係数は都市ガスと同じ傾向で減少していく ことを前提としていた。


➡ 熱供給については、電気・都市ガスと比べて脱炭素化が困難であり、 2050年時点でも化石燃料の使用が一定量残っていると考えられる。 そこで、下図の通り熱供給のCO₂排出係数が高いケース1,2を設定して シナリオ4(熱供給+CO₂回収)について感度分析を行った。

都市ガスと 同じ傾向で減少

ケース1 (2050年半減)

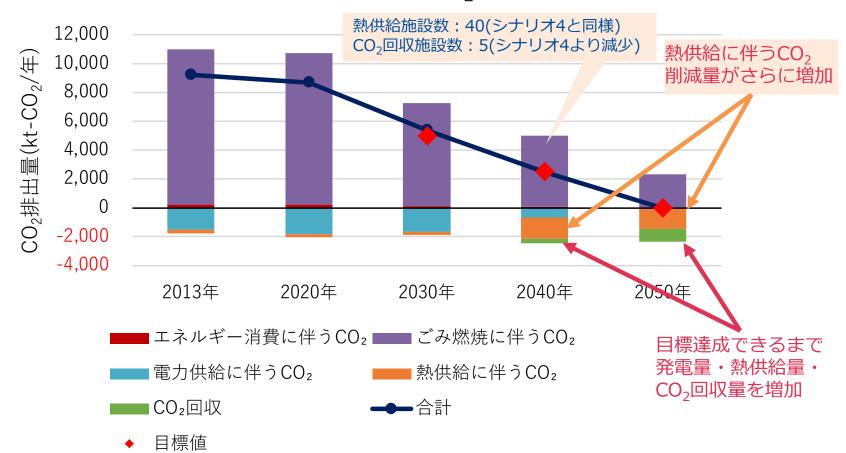

ケース2 (2050年5%減)

CO₂排出係数感度分析の検討結果

CO₂排出量の将来推移 (シナリオ4・ケース1)

ケース1: 熱供給のCO₂排出係数が2050年で現状の半減に留まる場合

一般廃棄物焼却施設からのCO₂排出量の推移

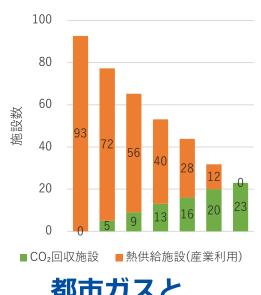


- ✓ 熱供給に伴うCO₂削減量が増加して、目標達成のためのCO₂回収量が減少
- ✓ 2050年においても熱供給に伴うCO₂削減効果あり

CO₂排出量の将来推移 (シナリオ4・ケース2)

ケース2: 熱供給のCO₂排出係数が2050年で現状の5%減に留まる場合

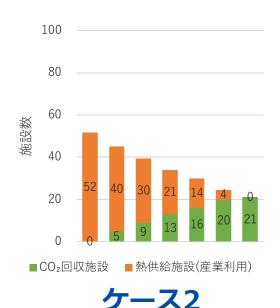
一般廃棄物焼却施設からのCO₂排出量の推移



- ✓ 熱供給に伴うCO₂削減量がさらに増加して、CO₂回収量がさらに減少
- ✓ 2050年においても熱供給に伴うCO₂削減効果あり

熱供給施設・CO2回収施設数(シナリオ4・ケース1,2)

2040年


各ケースにおける、2040年の目標達成に必要な熱供給施設(産業利用)・CO₂回収施設は下図の通り。

都市ガスと 同じ傾向で減少

(2050年半減)

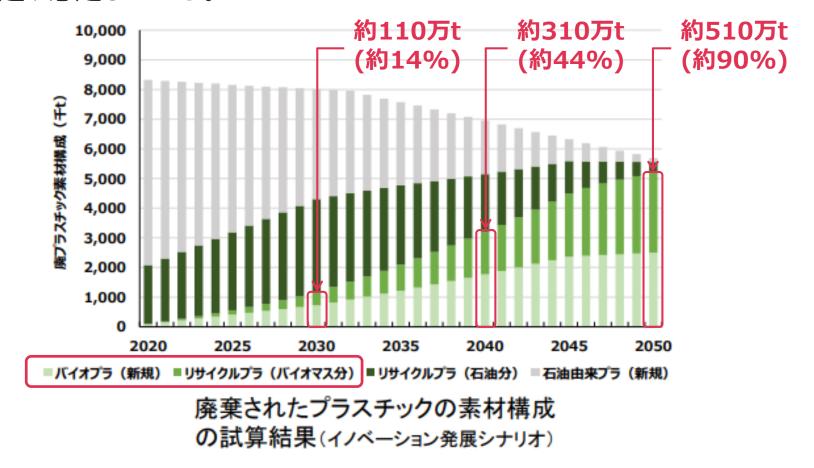
(2050年5%減)

熱供給に伴うCO₂削減効果が大きくなるにつれて、必要なCO₂回収施設数が同じでも、より少ない熱供給施設数で目標達成可能

→熱供給のCO₂排出係数が将来的にも高い場合、熱供給の重要度がより高い

2. バイオマスプラスチック割合の 感度分析

バイオマスプラスチック割合感度分析 の前提条件


ごみ中のバイオマス炭素割合(バイオマス比率)

- ✓ 各項目のバイオマス炭素割合をもとに、ごみ全体のバイオマス炭素割合(バイオマス比率)を算出。代表例として2050年のバイオ比率は以下の通り。(令和4年度春の研究討論会「一般廃棄物焼却施設におけるカーボンニュートラルの可能性」より)
- ✓ バイオマスプラスチックの普及により「プラスチック+PET」の炭素 分の一部もバイオマスとしてカウントできる可能性はあるが、ここで は「プラスチック+PET」は全て非バイオマスとしている。

項目	割合(湿重量)	焼却炭素量 (t-C/ごみt)※	バイオマス炭素 割合(%)※	バイオマス炭素 量(t-C/ごみt)
紙くず	20%	0.0502	94.3%	0.0473
プラスチック+PET	5%	0.0278	0.0%	0.0000
厨芥類	42%	0.0500	100.0%	0.0500
繊維くず	3%	0.0133	75.6%	0.0100
木竹草類	22%	0.0517	100.0%	0.0517
不燃物	8%	0.0000	_	_
合計	_	0.1929	82%	0.159

廃プラスチック処理量と素材構成

中長期シナリオ(案)では、廃プラスチック中のバイオマスプラスチック割合を 下図の通り想定している。

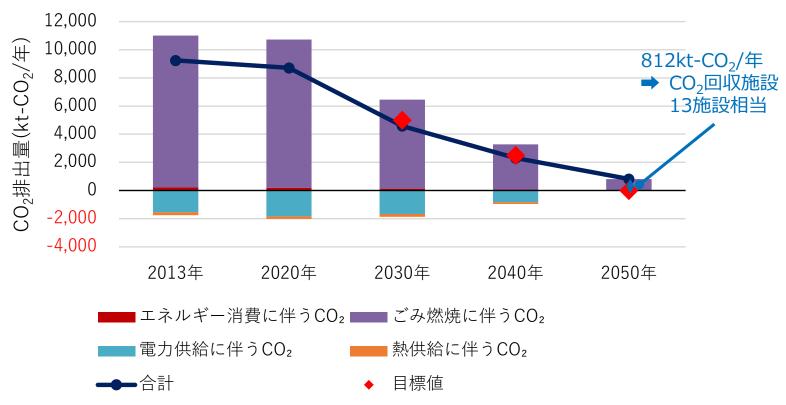
→ プラスチック中のバイオマスプラスチック割合を、2030年14%・2040年44%、2050年90%として、ベースシナリオとの違いを確認

バイオプラスチック割合感度分析の 検討結果

ごみのバイオマス比率・CO2排出量原単位

表. CO₂排出量原単位 (ベースシナリオ)

項目	単位	2020年	2030年	2040年	2050年
バイオマス比率	%	72%	74%	76%	82%
バイオマス由来	t-CO ₂ /ごみ-t	0.596	0.609	0.601	0.583
非バイオマス由来	t-CO ₂ /ごみ-t	0.233	0.213	0.190	0.124
合計	t-CO ₂ /ごみ-t	0.829	0.822	0.791	0.707


表. CO₂排出量原単位 (バイオプラ考慮)

項目	単位	2020年	2030年	2040年	2050年
バイオマス比率	%	72%	77%	85%	95%
バイオマス由来	t-CO ₂ /ごみ-t	0.596	0.635	0.672	0.675
非バイオマス由来	t-CO ₂ /ごみ-t	0.233	0.187	0.118	0.032
合計	t-CO ₂ /ごみ-t	0.829	0.822	0.791	0.707

バイオプラ割合の増加により、バイオマス比率が上昇、非バイオマス由来 CO₂排出量原単位が減少

CO₂排出量の将来推移 (バイオプラ考慮・ベースシナリオ)

一般廃棄物焼却施設からのCO₂排出量の推移

- ✓ 非バイオマス由来のCO₂排出量の減少により、高効率発電と消費電力削減のみを考慮したベースシナリオでも2030年・2040年の目標達成可能
- ✓ 2050年目標達成にはCO₂回収施設が必要だが、必要施設数は36施設 から13施設と大幅に減少
 - → CO₂削減目標達成に向けたバイオプラ導入促進の効果は大きい

3. まとめ

まとめ

[CO₂排出係数の感度分析結果]

- ✓ 熱供給に伴うCO₂削減効果が大きくなったことから、必要な熱供給施設数が同じなら、より少ないCO₂回収施設数でも目標達成可能
- ✓ 熱供給のCO₂排出係数が将来的にも高い場合、熱供給の重要度がより 高くなる。

[バイオプラスチック割合の感度分析結果]

- ✓バイオマス比率の上昇に伴う非バイオマスCO₂排出量の減少により、 2030年・2040年はベースシナリオでも目標達成可能
- ✓ 2050年目標達成にはCO₂回収施設が必要だが、必要施設数は13施設と 大幅に減少
- → エネルギー分野のCO₂排出係数やバイオマスプラスチックの導入割合 など将来の外部環境の違いによって、焼却施設における各対策の重要 度や必要量が変化する。

不確定要素が多い中で、いかにして焼却施設における適切な対策を 計画・実行していくかが課題である。