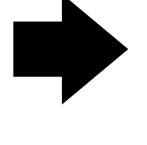
X線回折法による土壌混合ジオポリマーの結晶構造解析

〇笠利実希1,藤井健悟1,大渕敦司2,小川熟人3,小池裕也3 (1明大院理工, 2リガク, 3明大理工)

焼却飛灰の土壌混合ジオポリマー固化

Cs含有特定廃棄物の焼却飛灰処理¹⁾


不溶化処理が必要 ⇒ ジオポリマー固化

アルカリシリカ溶液

アルミノシリカ粉末 (フィラー)

重合反応

ジオポリマー

- CO。の発生が少ない 機械的強度が高い
- 化学的熱的安定性が高い

フィラーと溶出特性に関する報告が少ない

⇒ フィラーに種々の土壌を用いてジオポリマーを作製

福島県の一般廃棄物焼却場 で 2013 年 1 月に採取 137 Cs: 4222 ± 14 Bq/kg

 134 Cs: 396 ± 4 Bq/kg 埋め立て処分可能

関東ローム層の赤土を乾燥・ 粉砕・ふるい分けした物 結晶相: 石英、斜長石、

モルデナイト、クロライト、 カオリナイト、ムスコバイト

関東地方一体に分布する 表層土

結晶相: 石英、斜長石、 クロライト、カオリナイト、

結晶相: 石英、 ムスコバイト、ゲーレナイト

白信楽粘土を焼成し、粉砕

廃陶器

した物

黒曜石を高温で焼成、 発泡させた土壌改良材

結晶相: すべて非晶質

明治大学生田キャンパス で採取した土壌

結晶相: 石英、斜長石、 ムスコバイト、カオリナイト、

放射性セシウムの溶出試験

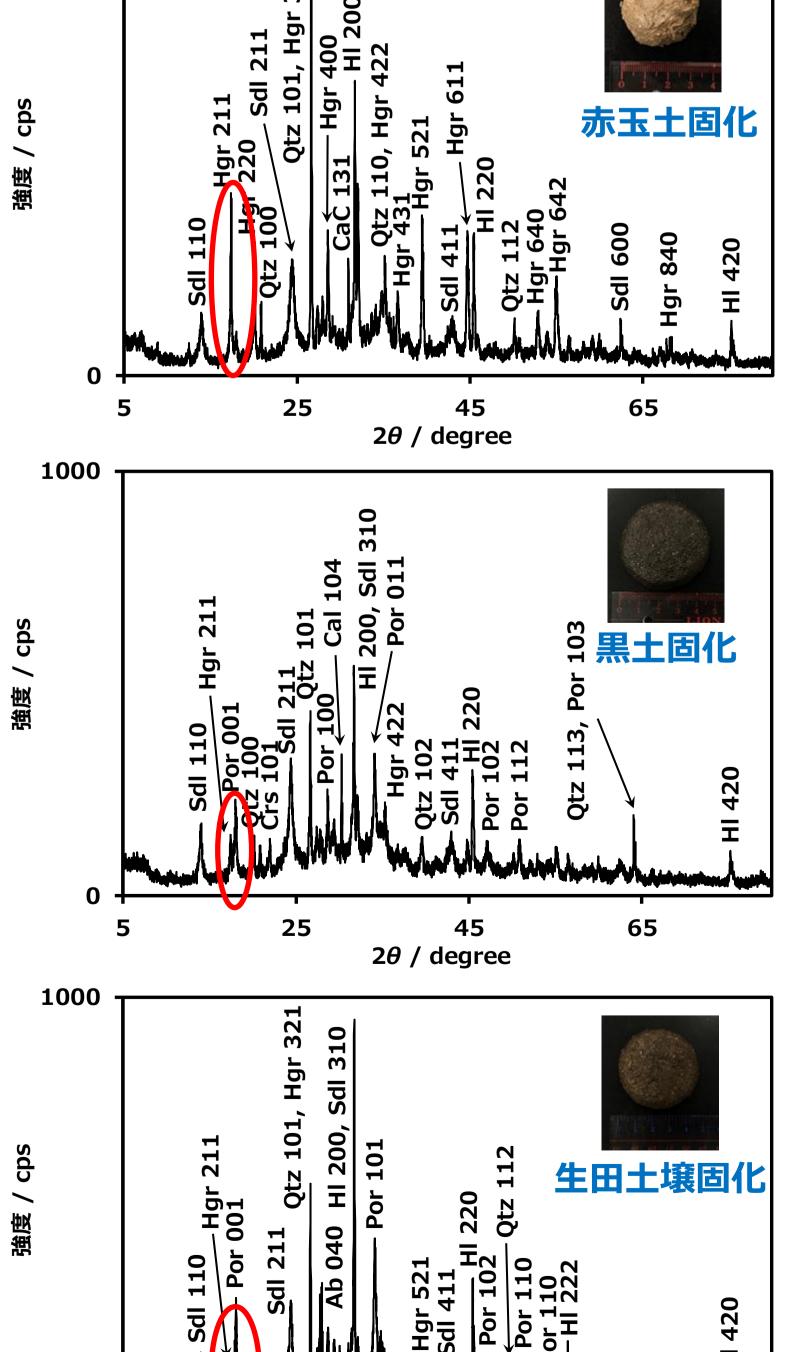
環境省告示 13 号試験2) 質量比; 試料: 純水 = 1:10 振とう:6 時間 HPGe 半導体検出器

2) 酒井伸一, 貴田晶子 監修: "廃棄物関連試料マニュアル", pp 31-41, 59-70 (2015) 廃棄物資源循環学会, 東京.

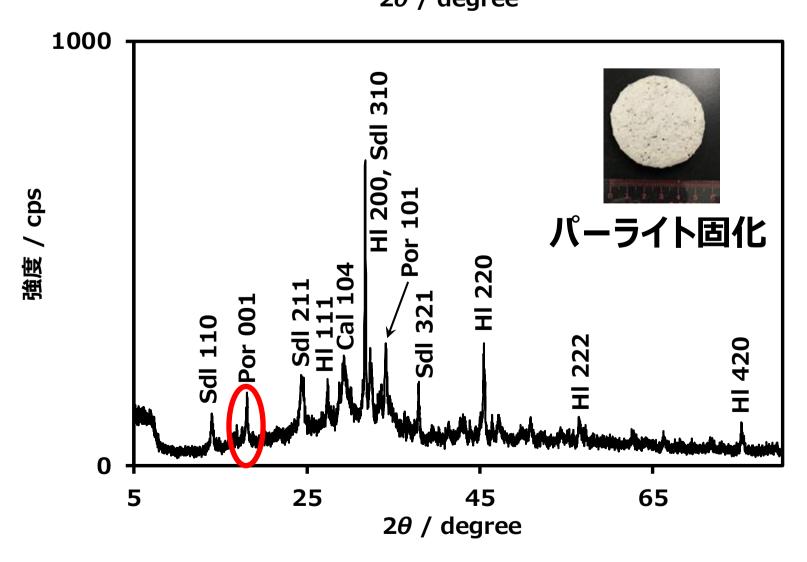
(PGT, INC., IGC-10200)

環境省告示 13 号試験による ¹³⁷Cs の溶出試験結果

ジオポリマー固化体	溶出率,%		
赤玉土	0.3	±	0.2
黒土	0.4	±	0.2
生田土壌	3.4	±	0.5
廃陶器	11.3	±	1.0
パーライト	11.8	±	0.9
アルミノシリカ粉末(通常のジオポリマー)	12.0	±	1.1
未処理の焼却飛灰	71.7	±	0.7


土壌混合ジオポリマー固化を施すことによって、放射性セシウムの 溶出を抑制できた。

赤玉土、黒土、生田土壌固化体で大きな溶出抑制効果


X線回折分析で結晶構造と抑制効果の関係を調査

土壌混合ジオポリマー固化体の結晶構造解析

土壌混合ジオポリマー固化体の X 線回折分析

廃陶器固化 **州** 1000 25 2θ / degree

◆ セメント固化体成分であるハイドロ ガーネットのピークが・・・・

溶出率が低 確認された

溶出率が高 ほぼ確認されず

フィラー中のアルミニウム量が 溶出抑制に影響している可能性

Ab: Albite(NaAlSi₃O₈), Cal: Calcite(CaCO₃), Crs: Cristobalite(SiO₂), HI: Halite(NaCl), Hgr: Hydrogarnet(3CaO · Al₂O₃ · 6H₂O), Por: Portlandite(Ca(OH)₂), Qtz: Quartz(SiO₂), Sdl: Sodalite(Na₈Al₆Si₆O₂₄Cl₂).

土壌中主要元素の蛍光 X 線分析

	- ↓- +☆	濃度, %					
	土壌	SiO ₂	Al_2O_3	Fe ₂ O ₃	TiO ₂	CaO	
	赤玉土	48.1	28.4	16.9	1.7	1.2	
	黒土	52.6	25.0	14.9	1.5	3.4	
	生田土壌	54.0	16.1	17.7	1.8	6.7	
	廃陶器	68.2	25.6	1.3	0.9	0.6	
_	パーライト	78.0	11.9	1.3	0.1	1.0	
溶出率が低 アルミニウムはゲーレナイトとして存							

Al, Fe, Ti などが多い

反応性が低い

フィラーとしては、ジオポリマーが生成しやすくなるようなアルミニ ウムなどの金属イオンを豊富に含むものが良い

まとめ

- ◆ 土壌混合ジオポリマー固化を施すことによって、放射性セシウム の溶出を抑制できた。また、アルミニウムなどの金属元素を多く含 むフィラーを用いた方が、溶出抑制効果が大きかった。
- ◆ 現在は廃棄物の下部に土壌層を 50 cm 以上敷設する必要 があるが、不溶化処理としては未解決である。低環境負荷な土 壌混合ジオポリマー処理による放射性セシウム不溶化を目指す。

特定廃棄物 土壌層 (50 cm 以上)

既存の廃棄物層

土壌混合 ジオポリマー固化体 既存の廃棄物層

 2θ / degree