高濃度HCI雰囲気の溶融排ガスにおける Hgの活性炭吸着除去に関する基礎研究

(株)クボタ 〇釜田陽介、上林史朗 クボタ環境サービス(株) 中外テクノス(株) 前畑有吾、佐野良和

●概要

除染廃棄物の溶融処理では、塩素含有薬剤(CaClo、廃塩化ビニル)を添加して放射性Csを揮散(気化)分離するため 溶融排ガスのHCI濃度が1,000~3,000 ppm程度と高い

活性炭によるバグフィルタ(BF)でのHq除去においては、排ガスのHCI濃度により性能が異なると考えられる (Hgの化学形態により活性炭への吸着特性が異なるため)

本報では、溶融BFを模擬した高濃度HCI条件で、恒温槽を用いたHgのカラム吸着基礎試験を実施した

1. 試験方法

- 活性炭試料[表1]: 粉末活性炭A、B、C(ヤシ殻系1種類、石炭系2種類)+CaCO。
- 試験手順[図1]:

試料5 gをガラス製のカラム(φ65 mm)に充填して恒温槽内に設置

- → 模擬混合ガス[O₂ 10%(dry)-H₂O 30%(wet)-HCI-金属Hg 500 μg/Nm³(dry)-N₂ balance]を 1 L/minで2時間流入(金属Hgは、液体金属Hgを恒温槽で定量気化させ、 N_2 ガスでパージして供給)
- → カラム出口のHg濃度を連続分析し、Hg除去性能を評価

● 試験条件[表2]:

2. 試験結果と考察

①HCI濃度の影響

- 活性炭A、B、Cそれぞれについて、 HCI濃度100、1,000、3,000 ppmの 3条件で試験を実施
- 活性炭Aについては、 活性炭濃度(=活性炭噴霧量)、 温度を変化させた条件でも実施

以降において概ね一定[図2]

デスロサンプ リング ライン ガス加湿部 水銀連続 試料 除害用活性炭 ● 出口Hg濃度のトレンドは、試験開始15分後 Hg発生部(恒温槽) ガラスカラム 出口サンプリングライン

図1 試験装置の概要

Hg吸着部(恒温槽)

- 活性炭A、B、Cのいずれについても、 HCI濃度が高い条件ほどHg除去率は高かった[図3]
 - ⇒ HCIが金属Hgの酸化剤として作用し、 ガス中のHCI濃度が高いほど、Hgが活性炭に 吸着されやすい二価形態(HgCl₂)に変化したためと考えられる
- ●活性炭の種類による大きな違いは見られなかった[図3]

②活性炭濃度(=活性炭噴霧量)の影響

- ▶ 活性炭濃度の増加と共にHg除去率は上昇した[図4] 0.2%(139 mg/Nm³)⇒除去率90%以上 0.3%(208 mg/Nm³)⇒除去率99%以上
 - ⇒ 溶融排ガスはHgが高度濃縮され、排ガス濃度が数百µg/Nm³となるケースもあるため BFで90~95%のHg除去率が求められ、100~150 mg/Nm3の活性炭噴霧が必要

表1 活性炭の性状

名称	原料	比表面積	ョウ素 吸着量	
		m ² /g	mg/g	
活性炭A	ヤシ殻系	1,037	1,120	
活性炭B	石炭系	900	800	
活性炭C	石炭系	800	810	

表2 試験条件

No.	試験内容	活性炭種	HCI濃度	活性炭 濃度	ガス温度
			ppm(dry)	%	°C
1	HCI濃度の 影響	活性炭A	100	0.1	180
2			1,000	0.1	180
3			3,000	0.1	180
4		活性炭B	100	0.1	180
5			1,000	0.1	180
6			3,000	0.1	180
7		活性炭C	100	0.1	180
8			1,000	0.1	180
9			3,000	0.1	180
10	活性炭濃度の 影響	活性炭A	3,000	0.2	180
11			3,000	0.3	180
12			3,000	0.5	180
13			3,000	1	180
14	温度の影響	活性炭A	3,000	0.1	200

HCl 100ppm HCI 1000ppn HCI 3000ppm 400) 幽縣 200 田 100 1:00 涌ガス時間 (h)

図2 各HCI濃度条件での出口Hg濃度トレンド[活性炭A]

③温度の影響

■ 温度依存性が見られ、Hg除去率は『180℃>200℃』[図5] ⇒ 高濃度HCI条件下でもBFの低温化がHg除去に有効

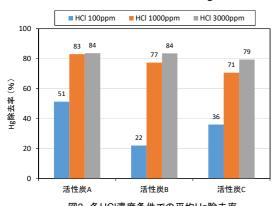


図3 各HCI濃度条件での平均Ha除去率

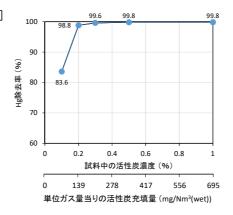


図4 活性炭濃度とHg除去率との関係 [活性炭A、HCI 3,000 ppm]

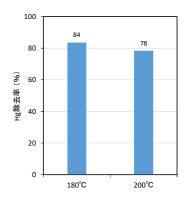


図5 温度の影響[活性炭A、HCI 3,000 ppm]

●まとめ

高濃度HCI条件(最大3,000 ppm)でHg吸着試験を行い、HCI濃度が高いほど活性炭によるHg除去率は高いことが検証された。