産業廃棄物由来の焼却飛灰における炭酸化処理による Pbの難溶化効果

○繁泉恒河1)、久保田洋1)、髙地春菜1)、山田裕己1) 1)株式会社フジタ

1. はじめに

焼却飛灰をめぐる課題

- ・重金属が多く、特別管理廃棄物に指定
- ・キレート添加等の処理が義務化
- ・最終処分場の水処理におけるキレ による硝化阻害等の影響が指摘
- ・キレート添加量が過剰となる可能性

キレート添加量の削減方法として 炭酸化処理による重金属の不溶化に着目

炭酸化の研究は一般廃棄物由来がメイン 産業廃棄物由来の焼却灰に関する知見は乏しい

同一施設から採取日を変えて複数回採取した産業廃棄物由 来の焼却飛灰を対象として、飛灰中の元素組成の変動を調 査し、炭酸化によるPbの難溶化について検討した。

2. 試験方法

塩ビカラム Φ104×400Hmm <mark>散水</mark> 給水タンク

図1 カラム試験装置

○供試試料

- ·採取時期:2018~2020年
- ・キレート処理前の焼却飛灰8種+煙道灰1種(消石灰噴霧前)
- ・中間処理施設:産業廃棄物(燃え殻、鉱さい。がれき類を除く)

特別管理産業廃棄物(廃石綿除く)

- ○炭酸化処理試験
 - ・φ100mmのカラムに各焼却飛灰350gDWを充填。
 - ・カラム下部からCO2ガスを給気。
 - ・未処理、炭酸化処理済み灰に環境庁告示13号試験を実施。

表1 散水・炭酸化処理条件

1	飛灰No.		A-1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	
	採取年月日		18/07	19/03	19/05	19/05	19/05	20/01	20/01	20/01	
J	充填量	gDW	350								
	CO ₂ 供給量	g-CO ₂ / gDW-Ash	90	90	130	100	90	60	60	60	
	通気時間	hr	2.7	2.7	3.9	3.0	2.7	1.8	1.8	1.8	

3. 結果

○各飛灰の含水率、熱しゃく減量、主要元素組成

各飛灰の含水率、勢しゃく減量、主要元素組成および変動係数(RSD) ※A-3~A-5は含水率20%程度で造粒後炭酸化処理

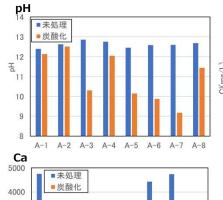
日代人の日小学、点でして「成皇、王安儿来相成のより支動所数(RSD) ※A-3~A-5は含木学20%程度で同植物の関係を											
		A −1	A-2	A-3	A-4	A-5	A-6	A-7	A-8	煙道灰	RSD
含水率	%	0.73	0.17	17	18	20	0.80	0.71	0.64	0.60	119%
熱しゃく減量	%	2.0	4.2	2.9	3.0	5.5	0.65	2.5	0.75	1.5	57%
Na	mass%	2.6	2.2	1.9	2.3	3.3	3.2	2.3	3.3	3.4	20%
Mg	mass%	0.071	0.051	0.082	0.089	0.044	0.045	0.07	0.044	0.20	28%
Al	mass%	0.11	0.11	0.15	0.081	0.082	0.067	0.22	0.072	0.73	44%
Si	mass%	0.90	1.6	0.67	0.75	0.55	0.39	1.6	0.67	2.2	49%
S	mass%	2.9	4.9	6.7	5.3	4.6	3.6	3.3	4.6	5.2	26%
CI	mass%	30	21	19	25	29	31	27	27	24	15%
K	mass%	6.3	3.6	5.4	5.6	5.6	4.9	6.9	5.2	4.1	17%
Ca	mass%	15	16	14	13	9	10	11	10	8	21%
Fe	mass%	0.30	0.31	0.046	0.088	0.19	0.20	0.85	0.33	0.89	80%
Pb	mass%	0.21	0.29	0.056	0.13	0.070	0.36	0.61	1.2	0.13	100%
Balance	mass%	40	49	50	46	46	45	43	47	49	7%

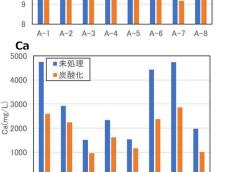
比較的変動が小さい元素

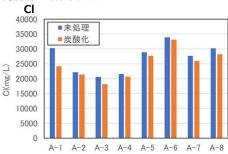
Na、Cl、K、Ca:

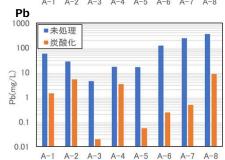
採取日によるばらつきは比較的小。 煙道灰のCaは同時期に採取した A-6~A-7の7~8割。

→飛灰中のCaはごみ質由来と推定


比較的変動が大きい元素


Pb:


採取日によって最大20倍以上の差。 A-7、A-8は鉛含有量の高い廃棄物 を焼却。


→受入廃棄物の影響大

○未処理・炭酸化処理後の飛灰からの各物質の溶出濃度

pH:飛灰によって炭酸化によるpHの低減に差。

Ca: 含有量とは異なり溶出量のばらつき大。 含有量と溶出量は相関なし。

→飛灰中Caの存在形態の割合が変動の可能性 Ca含有量-pH変化量に負の相関(-0.6)。

→廃棄物の性状により

pH低下に必要なCO2供給量は異なる

CI: 未処理と炭酸化後で変化なし。

→炭酸化によるフリーデル氏塩等の

難溶性塩の溶解は見られなかった

⇒飛灰は乾灰のため難溶性塩の形成が少ない

Pb:採取日によって80倍以上の差。

含有量-溶出量は高い相関(0.97)。 炭酸化によるPb溶出の低減に差。

→pH変化量-Pb低減率に正の相関(0.7)

⇒Pb溶出量の低減にpHの低下が寄与した可能性

4. まとめ

- ・塩類の含有量の採取日によるばらつきは小さかった。Caについて、消石灰の吹き込みのCa含有量への影響は小さいと考えられた。
- ・Pbの含有量は採取日によって大きく変動し、ごみ質中のPb含有量の変動が影響したことが示唆された。
- ・飛灰の炭酸化後のpHは、採取した飛灰ごとに差が生じた。pHの低下にはCO₂の供給量よりも、飛灰中に存在しCO₂と反応するCa量が影響すると推察された。
- ・Pbの溶出濃度は未処理、炭酸化処理後ともに飛灰間のばらつきが大きかったが、炭酸化処理後のPb溶出は未処理に対して80〜99.7%まで低下した。