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Objectives

To elucidate potential roles of microbial groups during high organic
load conditions and to understand switches in biochemical
pathways along with the contributing microbial groups

METH O D O L O G Y Figure 1. (a) Time course of methane yield in mL CH4 per g VS in substrate for each organic load condition; (b) VFA concentrations in g of corresponding VFAS

per L of AD sludge; isobutyric acid was not detected in all of the samples; (c) Initial and final pH of AD sludge for each organic load condition

Experimental Set-up

Input variable: Organic Load
Substrate: Same as acclimatization reactor
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50 mL seed sludge per vial
3 replicates per condition = 15 vials
Continuous shaking at 37 deg C
Acclimatization reactor
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A Figure 2. (a) Richness: Number of
observed Operational Taxonomic Units
(OTUs) vs. organic load in g VS of SR,
substrate per L of sludge; o
(b) Evenness: Shannon index vs. organic
load in g VS of substrate per L of sludge
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Microbial community became more
specific as it is subjected to stress
caused by higher organic load.
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K-means clusters are identified by different shades of the background color of each taxonomic group. et 4 Pathways inferred
% Bacterial groups that are significantly increasing in relative abundance with increase in organic load as confirmed via GLM fitting (ALDEx2) ® ®L outside of PICRUSt2
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Lactobacillales was the key player in
Figure 4. Clustering of predicted pathway starch degradation leading to
abundances from PICRUSt2 production of acetate.

The predicted pathway counts were normalized in

terms of centered log ratio (clr) via the ALDEx2 = Fermentation with pyruvate to
package. :

Cargnne segacaon | (AST patwa) acetate vs. to butanoate is preferred

fatty acid beta-oxidation |

L K-means clusters are identified by different shades at high OL as it allows faster
wmwm? of the background color of each pathway.
Lieucine '

consumption of starch and
neianoneness om 193 ang CO subsequent aceticlastic
methanogenesis.

-arginine, putrescine,
W superpathway of Larginine and L-omithine degradation
I Liysine fermentation 10 acefate and butanoate

CONCLUSION

engineering of microbial consortium to manage carbohydrate-rich substrates.

Figure 5. Proposed pathway of utilization of starch and hipolypeptone in AD inferred from the AD
performance, microbial community, and biochemical pathway abundance data

With lower butanoate production,
fatty acid beta-oxidation is impeded
lowering H production.

With limited H», methanogens were
forced to use acetate making
Methanosaeta prevalent as
Methanolinea cannot perform
aceticlastic methanogenesis.

The variations in the microbial community and the predicted biochemical pathways were used to explain the microbial
interactions and mechanisms in AD operating at high organic load with starch and hipolypeptone as substrate. Based on these,
an overall pathway of utilization of the substrate was proposed. Knowledge obtained from this study supports further research on

315t Annual Confere



	Slide Number 1

