Energy Conversion Engineering Laboratory Institute of Regional Innovation (IRI) # 弘前大学地域戦略研究所 The 31st Annual Conference of JSMCWM (September 16-18th, 2020) # Recovery of Ferulic Acid from Wheat Bran by using **Calcium Hydroxide** O <u>Irwan Kurnia</u>¹, Akihiro Yoshida^{1,2,*}, Tomonori Sonoki³, Guoqing Guan^{1,2}, Abuliti Abudula^{1,2} ¹Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, Aomori 030-0813, Japan ²Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8560, Japan ³Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan *e-mail: ayoshida@hirosaki-u.ac.jp #### Introduction - **Pharmaceutical** - Cosmetics - Precursors of flavor - **Aromatic chemical** feedstock #### 2. The progress of ferulic acid recovery from wheat bran Table 1. The progress of ferulic acid recovery from wheat bran | Method | Medium & Conditions | Yield of
Ferulic acid ^b
(mg/g) | Purity of
Ferulic acid | |--|---|---|---------------------------| | Base-hydrolysis | 1M NaOH; 30 °C; 24h | 3.75 | 8.7 | | Steam explosion ¹ | High pressure steam;
180 °C; 5.2 MPa; 0.95 h | 0.97 | - | | Pressurized ethanol ² | 20% ethanol; 160 °C; 3 h | 0.26 | - | | Enzymatic digestion (Aspergillus niger) ³ | $EL^a = 662 \text{ U/g}; 45^{\circ}\text{C}; 9 \text{ h}$ | 2.16 | - | ^aEnzymatic loading; ^b sum of isomer; ^c based on GC area of product. ¹Food Chem., 2009, 115, 1542; ²Waste and Biomass Valorization, 2020, 11, 4701; 3Biocatal. Agric. Biotechnol., 2018, 15, 304; - 1. Hard to handle and not environmentally friendly. - 2. High energy consumption and high cost. #### **Experimental** ### **Results and Discussion** 1. Catalytic hydrolysis of wheat bran to recover ferulic acid 1M NaOH Ca(OH)2 Figure 2. Neutralization curve of supernatant aliquot (1 ml) by 0.01 M HCl. pH 2.7 Volume of 0.01 M HCl (ml) 40 → WB – 1M NaOH → WB – Ca(OH) 135 160 120 • Much lower solubility of Ca(OH)2 shows the benefit to reduce the consumption of acid for neutralization in the post-treatment process Figure 1. Chromatogram profile of the extracted oils that produced by 1M NaOH and Ca(OH)₂ - Recovery purity of ferulic acid over Ca(OH)2-treated (66.3 %) was more selective than the usage of 1M NaOH (8.7%) - NaOH was also hydrolyzed the fat that caused contamination of fatty acid derivatives into the product. #### Table 2. Liquid properties of the wheat bran hydrolysis product | Duon anti an | Catalysts | | | |--|-------------|---------------------|--| | Properties | 1M NaOH | Ca(OH) ₂ | | | Color | Light Brown | Light Yellow | | | Viscosity
(mm ² /s) ^a | 302 | 4 | | - ^a Determined by using viscometer Ubbelohde at 25 °C. - Fatty acid salt content in the 1M NaOH-treated aliquot lead the increase of viscosity to 302 mm²/s. - Conversely, the low viscosity of Ca(OH)2-treated aliquot (4 mm²/s) was due to low fatty acid salt content in the product. ## 2. Washing treatment of hydrolysis product. Figure 3. Chromatogram of the extracted oil that produced by Ca(OH)₂ after the washing treatment. The purity of ferulic acid was successfully increased from 66.3 % to 87.4 % by the washing treatment without significant loss of ferulic acid. #### Conclusions 4 1 - Ca(OH)2 selectively hydrolyzed the ester bond between ferulic acid and polysaccharides. - Ca(OH)2-treated process is more environmentally friendly due to the low consumption of acid - The purity of ferulic acid in the extracted oil produced by Ca(OH)2 increased without a significant loss of the yield of ferulic acid after the simple washing treatment. ### Acknowledgement This work is supported by Japan Science and Technology Agency (JST) and KONICA MINOLTA, INC Washing treatment of hydrolysis product. Water phase ← DI water (5 ml × 2 Ethyl acetate phase 1 Ethyl acetate phase 2 To solvent evaporation