Energy Conversion Engineering Laboratory Institute of Regional Innovation (IRI)

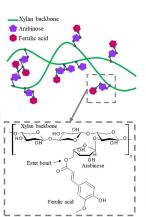
弘前大学地域戦略研究所

The 31st Annual Conference of JSMCWM (September 16-18th, 2020)

Recovery of Ferulic Acid from Wheat Bran by using **Calcium Hydroxide**

O <u>Irwan Kurnia</u>¹, Akihiro Yoshida^{1,2,*}, Tomonori Sonoki³, Guoqing Guan^{1,2}, Abuliti Abudula^{1,2}

¹Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, Aomori 030-0813, Japan


²Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8560, Japan

³Graduate School of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan

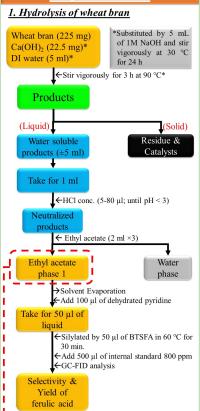
*e-mail: ayoshida@hirosaki-u.ac.jp

Introduction

- **Pharmaceutical**
- Cosmetics
- Precursors of flavor
- **Aromatic chemical** feedstock

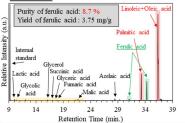
2. The progress of ferulic acid recovery from wheat bran

Table 1. The progress of ferulic acid recovery from wheat bran


Method	Medium & Conditions	Yield of Ferulic acid ^b (mg/g)	Purity of Ferulic acid
Base-hydrolysis	1M NaOH; 30 °C; 24h	3.75	8.7
Steam explosion ¹	High pressure steam; 180 °C; 5.2 MPa; 0.95 h	0.97	-
Pressurized ethanol ²	20% ethanol; 160 °C; 3 h	0.26	-
Enzymatic digestion (Aspergillus niger) ³	$EL^a = 662 \text{ U/g}; 45^{\circ}\text{C}; 9 \text{ h}$	2.16	-

^aEnzymatic loading; ^b sum of isomer; ^c based on GC area of product.

¹Food Chem., 2009, 115, 1542; ²Waste and Biomass Valorization, 2020, 11, 4701; 3Biocatal. Agric. Biotechnol., 2018, 15, 304;


- 1. Hard to handle and not environmentally friendly.
- 2. High energy consumption and high cost.

Experimental

Results and Discussion

1. Catalytic hydrolysis of wheat bran to recover ferulic acid 1M NaOH Ca(OH)2

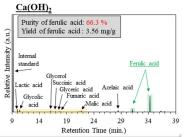


Figure 2. Neutralization curve of supernatant aliquot (1 ml) by 0.01 M HCl.

pH 2.7

Volume of 0.01 M HCl (ml)

40

→ WB – 1M NaOH

→ WB – Ca(OH)

135

160

120

• Much lower solubility of Ca(OH)2 shows the benefit to reduce the consumption of acid for neutralization in the post-treatment process

Figure 1. Chromatogram profile of the extracted oils that produced by 1M NaOH and Ca(OH)₂

- Recovery purity of ferulic acid over Ca(OH)2-treated (66.3 %) was more selective than the usage of 1M NaOH (8.7%)
- NaOH was also hydrolyzed the fat that caused contamination of fatty acid derivatives into the product.

Table 2. Liquid properties of the wheat bran hydrolysis product

Duon anti an	Catalysts		
Properties	1M NaOH	Ca(OH) ₂	
Color	Light Brown	Light Yellow	
Viscosity (mm ² /s) ^a	302	4	

- ^a Determined by using viscometer Ubbelohde at 25 °C.
- Fatty acid salt content in the 1M NaOH-treated aliquot lead the increase of viscosity to 302 mm²/s.
- Conversely, the low viscosity of Ca(OH)2-treated aliquot (4 mm²/s) was due to low fatty acid salt content in the product.

2. Washing treatment of hydrolysis product.

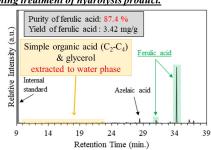


Figure 3. Chromatogram of the extracted oil that produced by Ca(OH)₂ after the washing treatment.

The purity of ferulic acid was successfully increased from 66.3 % to 87.4 % by the washing treatment without significant loss of ferulic acid.

Conclusions 4 1

- Ca(OH)2 selectively hydrolyzed the ester bond between ferulic acid and polysaccharides.
- Ca(OH)2-treated process is more environmentally friendly due to the low consumption of acid
- The purity of ferulic acid in the extracted oil produced by Ca(OH)2 increased without a significant loss of the yield of ferulic acid after the simple washing treatment.

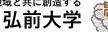
Acknowledgement

This work is supported by Japan Science and Technology Agency (JST) and KONICA MINOLTA, INC

Washing treatment of hydrolysis product.

Water

phase


← DI water (5 ml × 2

Ethyl acetate phase 1

Ethyl acetate

phase 2

To solvent evaporation

