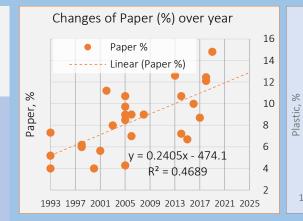
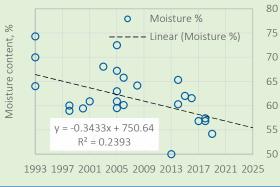
Assessing Heating Value of MSW of Dhaka City to Support WtE Technology IE-1

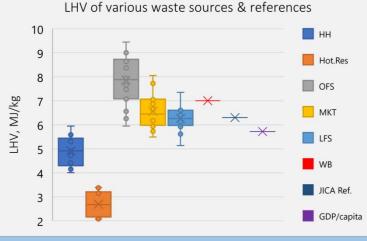
*Md. Shoriful Alam Mondal¹⁾, Hidetoshi Kitawaki^{2), 1)} Graduate School of Toyo University, ²⁾Toyo University

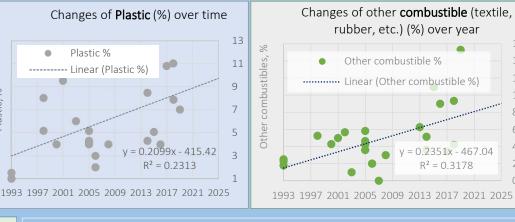
OBJECTIVE


Assessing characteristics MSW of Dhaka to support the feasibility of WtE technology.

MFTHODOLOGY


- o Characterized data are projected and liner regression equation is drawn based on published and unpublished data.
- o Moisture, physical composition, and LHV are calculated for different waste sources. LHV is calculated using three different models: Eq. 1(Chang et al., 2007), Eq. 2 (Drudi et al., 2019) and Eq. 3 (JICA, 2005). The avg. LHV of two models (Eq. 1 & Eq.2) is compared with JICA (2017) & WB (1999).


CONCLUSION


- from offices can be Waste incinerated as it exhibits suitable LHV (7.86 MJ/kg) for power generation.
- Market, office, and household 0 waste may be targeted for incineration with appropriate pretreatment for combustibility.
- Hotel & restaurant wastes are 0 suggestive for anaerobic digestion for high moisture content.
- Projection analysis may be 0 improved more with historical data refinement to support future WtE technology in Dhaka city.

Changes of moisture (%) over year

Table 1: Waste quality information based on different sources in Dhaka city (2018-2019)*

Masta Courses	Generation (100%)							Landfill (71%)	
Waste Sources -	НН	OFS	STREET	MKT	НОТ	Total	LFS-M	LFS-A	
Generation, t/d	4366	274.4	913.0	924.7	760.9	7239	2372	2774	
Moisture, %	62.16	43.19	37.75	55.10	74.10	61.74**	56.77	56.90	
Recyclable, %	24.20	39.28	20.44	42.50	23.32	26.54	31.09	25.31	
Combustible %	26.14	49.14	43.46	43.69	23.40	29.37**	38.17	33.17	

Note. *Analysis is made based on the data taken from JICA, DNCC, DSCC (2018). t/d: ton/day, HH: household, OFS: Office, Street: Street sweeting and construction, MKT: Market, HOT: Hotel &

Table 1: Descriptive statistics of calculated LHVs

Statistics	HH	Hot.Res	OFS	MKT	LFS
Mean, LHV ($ar{x}$), MJ/kg	4.91	2.69	7.86	6.56	6.27
Median, LHV (<i>Md</i>), MJ/kg	4.91	2.67	7.88	6.44	6.26
Standard Error ($\sigma_{ar{p}}$)	0.14	0.13	0.24	0.16	0.12
Standard Deviation(σ_X)	0.61	0.56	1.01	0.70	0.49
Sample size (<i>n</i>)	18	18	18	18	18
Margin of error (coef. 1.96)	0.28	0.26	0.49	0.32	0.23
Upper bound (M_u), MJ/kg	5.19	2.95	8.32	6.88	6.49
Lower bound (M_l), MJ/kg	4.63	2.43	7.39	6.24	6.04

Note. HH: household, OFS: Office, MKT: Market, Hot.Res: Hotel & Restaurant, LFS: Landfill Site

Acknowledgement: Dhaka North City Corporation. Bangladesh Dhaka South City Corporation, Bangladesh

16

14

12

4

2