
共同試験の概要説明 ~環告13号法の改正·今回の調査の趣旨~

産業廃棄物の検定方法に係る分析操作マニュアル (第3版)

令和7年10月

環境省 環境再生・資源循環局 廃棄物規制担当参事官室

廃棄物資源循環学会 廃棄物試験·検査法研究部会 (大阪公立大学 水谷 聡)

告示13号試験と改正検討業務

- 産業廃棄物に含まれる金属等の検定方法(昭和48年環境庁告示第13号)
- 埋立処分/海洋投入処分をしようとする廃棄物 (燃え殻,汚泥,鉱さい,ばいじん,廃酸,廃アルカリ)
- 測定対象項目は34項目

1	アルキル水銀化合物	11	テトラクロロエチレン	21	シマジン	31	ニッケル又はその化合物
2	水銀又はその化合物	12	ジクロロメタン	22	チオベンカルブ	32	バナジウム又はその化合物
3	カドミウム又はその化合物	13	四塩化炭素	23	ベンゼン	33	フェノール類
4	鉛又はその化合物	14	1,2-ジクロロエタン	24	セレン又はその化合物	34	1,4-ジオキサン
5	有機燐(りん)化合物	15	1,1-ジクロロエチレン	25	有機塩素化合物		
6	六価クロム化合物	16	シス-1,2-ジクロロエチレン	26	銅又はその化合物		
7	砒(ひ)素又はその化合物	17	1,1,1-トリクロロエタン	27	亜鉛又はその化合物		
8	シアン化合物	18	1,1,2-トリクロロエタン	28	弗(ふつ)化物		
9	PCB	19	1,3-ジクロロプロペン	29	ベリリウム又はその化合物		
10	トリクロロエチレン	20	チウラム	30	クロム又はその化合物		

環境省からの受託業務

- 分析方法を多く引用しているJIS K0102の改正への対応
- 廃棄物試料に対して課題のある測定方法の改善

告示13号試験の改正の経緯

S48年(1973)	制定	
S49年(1974)	改正	pH調整の操作手順の変更: 試料溶媒混合後→試料溶媒混合後
S51年(1976)	改正	①pH調整試薬の変更、②最低混合液量の変更、③ろ過条件の変更
S58年(1983)		検討委員会が開かれ、改正案が提案されるも、改正は行われなかった
H21~24年		検討委員会による検討
H25年(2013)	改正	溶出操作の変更 ①溶媒を純水に変更 ②振とう方向は水平振とうに統一 ③固液分離は(遠心分離+ろ過) ④ろ紙を1μmメンブランフィルターに変更
H25~30年		検討委員会による検討
R元年(2019)	改正	告示別表第一の追加(六価クロムの吸光光度法) → JIS法から,発色試薬と酸の添加順を変える「逆添加法」の採用 告示別表第六の改正(有機塩素化合物の前処理法) → 吸光光度法からイオンクロマトグラフ法への変更 有機ヒ素分析時の廃棄物試料の分解法 → 十分な温度・時間が必要(400 ℃以上、硫酸白煙が発生して30分以上)
R2~6年		検討委員会による検討
R7年(2025)	改正	JIS K0102の統合・分冊化への対応が主、その他 技術更新への対応等

告示13号 2025年改正(2025年10月1日施行)の主な内容

項目	告示改正の概要
有機燐⟨りん⟩化合物	 町和49年9月環境庁告示第64号付表1から、JIS K 0102-4の7.2.3の引用に変更する。 JIS K 0102-4の7.2.4(ガスクロマトグラフィー質量分析法)は適用しない。
六価クロム化合物	● JIS K 0102-3の24.3.7(液体クロマトグラフィーICP質量分析法)は適用しない。
シアン化合物	小型蒸留装置を適用する。昭和46年12月環境庁告示第59号付表1(全シアン測定方法)を適用する。イオン電極による電位差滴定法は削除する。(JIS K 0102-2では附属書となったため)
セレン又はその化合物	● 3,3'-ジアミノベンジジン吸光光度法は削除する。(JIS K 0102-3では附属書となったため)
弗〈ふつ〉化物	● 小型蒸留装置を適用する。 ● イオン電極による電位差滴定法は削除する。(JIS K 0102-2では附属書となったため)
ベリリウム又はその化合物	● 別表7の第3、第4をJIS K 0102-3の31の引用に変更する。
バナジウム又はその化合物	● N-ベンゾイル-N-フェニルヒドロキシルアミン吸光光度法は削除する。(JIS K 0102-3では附属書となったため)
フェノール類	 適用除外としていた流れ分析法(JIS K 0170-5の6.3.4(くえん酸蒸留・4-アミノアンチピリン発色CFA法))を、適用可能とする。 前処理に小型蒸留装置を用いる方法を追加し、小型の蒸留フラスコを用いる方法は除外する。

- ✓ JIS K 0102の改正に合わせて技術更新
- ✓ 基本的には関連告示(告示59号、告示64号)と同じ。廃棄物特有の課題がある場合のみ異なる。
- ✓ 産業廃棄物の検定方法に係る分析操作マニュアル(第3版)はHP公開済み

https://www.env.go.jp/recycle/waste/guideline.html https://www.env.go.jp/content/000346612.pdf

告示13号の今後の改正に向けた検討

六価クロム

- 価数で毒性が異なるため、Cr(VI)のみを規制対象としている。
- 別表第一(逆添加法)以外の分析では,回収率80~120%であることを要求。
- 廃棄物性状による化学形態の違い,共存物質による発色反応や分離操作への妨害, 低濃度分析の難しさ等の複合的な課題があり,正確で高精度な測定には,適切な 測定手法の選択と,適切な化学操作が不可欠。

測定法	特徴	利点	欠点•課題
ジフェニルカル バジド吸光光度 法(別表第一)	六価クロムのみを 発色させて測定	比較的簡便	■ 濁りや着色がある試料には適用できない。● 他の物質の干渉により上手く発色しない試料がある。● 十分な回収率を得られない試料がある。
鉄共沈前処理 +ICP-AES、 ICP-MS	前処理でCr(VI) を分離して全クロ ムを分析	高感度	◆ 分離が難しい試料がある (共存物質の干渉などによりCr(VI)を除去 してしまうことがある)。

⇒ 六価クロムの前処理法(鉄共沈法)の改善を検討中

□複数の廃棄物試料を用いて、従来法と改善法でそれぞれ前処理し、 ICP-MSでクロム濃度を測定(繰返し回数:3回)

	廃棄物の種類	試料名	廃棄物の内容等
1	ばいじん	ばいじん18	一般廃棄物の焼却飛灰
2		ばいじん21	一般廃棄物の焼却飛灰
3	燃えがら	燃えがら3	一般廃棄物の焼却残渣(主灰)
4	鉱さい	鉱さい3	銑鉄鋳造物製造業 鋳物製造に伴うスラグ等
5	汚泥	汚泥19	水処理汚泥(無機)

吸光光度法における逆添加法(別表第一)と従来法との比較

逆添加法(告示13号別表第一)

緑の網かけは添加回収率80~120%

			未添加		六価クロム添加						
	試料名	Cr濃度 (mg/L)	標準偏差 (mg/L)	変動係数 (%)	添加濃度 (mg/L)	Cr濃度 (mg/L)	標準偏差 (mg/L)	変動係数 (%)	回収率 (%)		
1	ばいじん18	0.389	0.001	0.4	0.4	0.787	0.001	0.1	99.3		
2	ばいじん21	0.046	0.003	5.7	0.1	0.042	0.002	4.4	-3.3		
3	燃えがら3	0.952	0.013	1.4	1.0	1.926	0.013	0.7	97.4		
4	鉱さい3	<0.005(0)	0.000		0.05	0.046	0.001	1.2	91.5		
5	汚泥19	0.025	0.004	14.6	0.05	0.073	0.006	7.9	95.1		

順添加法(JIS K 0102 65.2.1 ジフェニルカルバジド吸光光度法)

			未添加		六価クロム添加					
	試料名	Cr濃度 (mg/L)	標準偏差 (mg/L)	変動係数 (%)	添加濃度 (mg/L)	Cr濃度 (mg/L)	標準偏差 (mg/L)	変動係数 (%)	回収率 (%)	
1	ばいじん18	0.400	0.003	0.7	0.4	0.781	0.016	2.1	95.2	
2	ばいじん21	<0.005(0)	0.000	_	0.1	<0.005(0)	0.000	_	0.0	
3	燃えがら3	0.928	0.003	0.3	1.0	1.943	0.023	1.2	101.5	
4	鉱さい3	<0.005(0)	0.000	_	0.05	0.042	0.000	0.7	83.5	
5	汚泥19	0.019	0.007	38.5	0.05	0.051	0.006	11.9	63.3	

鉄共沈法(従来法vs.改善法)の分析結果

繰返し測定:3回

		;	六価クロム添加						
試料		Cr濃度 (mg/L)	標準偏差 (mg/L)	変動係数 (%)	添加濃度 (mg/L)	Cr濃度 (mg/L)	標準偏差 (mg/L)	変動係数 (%)	回収率 (%)
/ * \ \ \ \ 10	従来法	0.390	0.006	1.6	0.4	0.633	0.008	1.2	60.8
ばいじん18	改善法	0.461	0.008	1.8	0.4	0.886	0.010	1.2	106.3
/ / 1 \	従来法	0.123	0.006	5.1	0.1	0.185	0.006	3.2	62.3
ばいじん21	改善法	0.118	0.002	1.3	0.1	0.232	0.005	2.0	114.7
燃えがら3	従来法	0.924	0.019	2.1	1.0	1.711	0.032	1.9	78.7
燃えかり3	改善法	0.867	0.051	5.9	1.0	1.747	0.055	3.2	88.1
2 ¢+1.√2	従来法	<0.001(0)	0.000	_	0.05	0.008	0.002	21.5	15.1
鉱さい3	改善法	0.005	0.000	10.3	0.05	0.058	0.001	1.2	106.7
年 210	従来法	<0.001(0)	0.000	_	0.05	0.018	0.001	7.8	37.0
汚泥19 	改善法	0.001	0.000	13.9	0.05	0.042	0.001	1.3	82.7

改善法での標準添加回収率:80~120% ⇒ pH制御により鉄共沈法の回収率の上昇を確認

本年度、室間精度を確認し、改正へ向けて最終段階へ

今回の共同試験の趣旨などとお願い

測定対象項目	配布試料	試験の概要・目的	位置づけ
① 六価クロム	ばいじん	鉄共沈改善法の精度調査	次期改正に向けての可能 性・妥当性調査
② 有機塩素化合物	模擬ヘキサン 抽出溶液	告示別表第六+イオンクロマトグラフ法の精度調査	前回改正への対応実態の 調査
③ 有機ヒ素	模擬溶出液	分解条件(温度・時間)の留 意事項の周知,効果確認	前回マニュアル改正への対 応実態の調査

- 六価クロムについては,将来的な環告13号法の改正における,鉄共沈改善法の採用可能性を確認することが主目的です。改善法の妥当性や特性を多くの分析機関の協力の下で比較・検討・確認したいとの意図が強く,「共同実験」と位置づけています。
- 一方, 有機塩素化合物と有機ヒ素については, 前回の告示改正およびマニュアル改正の, その後の実態把握を意識しており, 精度管理調査の意味合いが強いものです。
- 有機塩素化合物については, 昨年度のアンケートでの希望数をもとに準備していましたが, 参加希望が想像以上に多く, 一部の機関にはお断りすることになり, 誠に申し訳ありません。
- お忙しい中, ボランティアベースでご協力いただいて恐縮です。ありがとうございます。

ご協力よろしくお願い致します。